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ABSTRACT
In most spatial database applications, the input data is very large.
Previous work has shown the importance of using spatial indexing
and parallel computing to speed up such tasks. In recent years,
GPUs have become a mainstream platform for massively parallel
data processing. On the other hand, due to the complex hardware
architecture and programming model, developing programs op-
timized towards high performance on GPUs is non-trivial, and
traditional wisdom geared towards CPU implementations is often
found to be ineffective. Recent work on GPU-based spatial index-
ing focused on parallelizing one individual query at a time. In this
paper, we argue that current one-query-at-a-time approach has low
work efficiency and cannot make good use of GPU resources. To
address such challenges, we present a framework named G-PICS for
parallel processing of large number of concurrent spatial queries
over big datasets on GPUs. G-PICS is motivated by the fact that
many spatial query processing applications are busy systems in
which a large number of queries arrive per unit of time. G-PICS
encapsulates an efficient parallel algorithm for constructing spatial
trees on GPUs and supports major spatial query types such as spa-
tial point search, range search, within-distance search, k-nearest
neighbors, and spatial joins. While support for dynamic data inputs
missing from existing work, G-PICS provides an efficient parallel
update procedure on GPUs. With the query processing, tree con-
struction, and update procedure introduced, G-PICS shows great
performance boosts over best-known parallel GPU and parallel
CPU-based spatial processing systems.
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1 INTRODUCTION
Over the past few years, there has been great interest towards
spatial query processing motivated by increasing availability of
spatio-temporal data. There are a large number of applications
such as geographic information systems (GIS), mobile computing,
scientific computing, epidemic simulation, astrophysics, just to
name a few. Popular spatial queries include spatial point search,
range search, within-distance search, k-nearest neighbor (kNN), and
spatial joins [23, 36]. Index-based access methods, which reduce
the number of points to be searched [32], are shown to be the
prerequisite of having efficient spatial query processing in large
datasets. Parallelization is another common approach in achieving
high performance while dealing with spatial databases. Previous
work demonstrated the great potential of parallel algorithms in
query processing [7, 11, 16, 37, 38]. On the other hand, if parallelism
is adopted without spatial data structures in query processing, the
performance gain obtained will fade away quickly as data size
increases [6, 9, 14, 35].

Over the last decade, many-core hardware has been adapted
to speed up high-performance computing (HPC) applications [4].
Among them, Graphical Processing Units (GPUs) have become a
mainstream platform for massively parallel data processing [26]. A
modern GPU usually has thousands of thin computational cores that
are organized into an array of streaming multiprocessors (SMs).
There are also several layers of memory with different accessi-
bility, and accessing costs. First, there are multiple gigabytes of
off-chip Global Memory to which all the SMs have read and write
accesses simultaneously, and has the largest capacity on GPUs. Sec-
ond, each SM has programmable high-speed shared memory and
non-programmable L1/L2 cache for local memory accesses. Consid-
ering the software side for programming, thousands of fine-grained
threads can be launched simultaneously. Due to the complex hard-
ware architecture and programming model, developing programs
optimized towards achieving high performance on GPUs is non-
trivial and traditional wisdom geared towards (even multi-core)
CPU implementations is often found to be ineffective.

Recent work [12] presented a GPU-based spatial index called
STIG (Spatio-Temporal Indexing using GPUs) to support spatio-
temporal search queries [12]. Based on the k-d tree, a STIG tree
consists of intermediate nodes, and a set of leaf blocks to store the
data records in consecutive memory locations. A STIG tree is con-
structed using a serial algorithm on the CPU, and then transferred
to the GPU for query processing. Spatial query execution over STIG
(Figure 1) consists of two steps : (1) leaf nodes satisfying the search
conditions are identified; and (2) all data points in the identified
nodes are examined to determine the final results. STIG processes
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Figure 1: Traditional tree search versus parallel linear search
against all leaf nodes in STIG

one query at a time. However, in parallelizing one tree search, it is
not easy to achieve a high degree of parallelism, especially when
the algorithm visits higher levels of the tree. Hence, STIG adapts
a data parallel solution for this step on GPU in which all the leaf
blocks are transferred to GPU and scanned in a brute-force manner.
This idea was followed by Chavan et al. [8] for spatio-temporal data
visualization. In this work, a variation of the quadtree was used
for indexing the input data. Similar to STIG, the tree structure is
built on CPU, and leaf nodes with their attached data records are
transferred to GPU for query processing.

We argue that the STIG approach, which scans all leaf nodes, is
fundamentally inefficient as it literally changes the total amount
of work (work efficiency) from logarithmic to linear (Figure 1). Al-
though STIG takes advantage of the thousands of GPU cores to
process leaf nodes concurrently, the speedup can be quickly offset
by the growing number of leaf nodes in large datasets. In this paper,
we propose an approach that bears the logarithmic work efficiency
for each query yet overcomes the problem of low parallelism level.
Instead of parallelizing a single tree-search operation, our strat-
egy is to parallelize multiple queries running concurrently.
It is well-known that many location-based applications are busy
systems with very high concurrent query arrival rate [25, 30]. More-
over, in scientific simulations such as molecular and astrophysical
simulations, millions of spatial queries such as kNNs and range
searches are issued at every step of the simulation [19]. The batch
query processing approach in our solution achieves task parallelism
on GPUs, allowing each thread to run an individual query. A search
query can therefore be done in logarithmic steps. Because each
thread roughly carries the same work and is independent to others,
there is no problem in parallelizing the many tree search operations.

Another advantage of our approach is we achieve much better
GPU resource utilization in the second step of spatial query pro-
cessing, i.e., retrieving query results from the leaf nodes. Within
the GPU device, global memory has the highest access latency. In
STIG, Each query scans a list of leaf nodes to find their data records.
Therefore, the same data record can be accessed many times by
different queries in a workload. As a result, the program easily
hits a performance ceiling due to congestion of global memory.
To show this, we implemented STIG following the descriptions
in [12]. Figure 2 shows the utilization of multiple GPU resources
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Figure 2: GPU resource utilization in running a STIG-like kernel
using Nvidia Tesla P100

recorded by NVidia Visual Profiler (NVVP) for a within-distance
search query against a 16-million-point dataset. Clearly, most of
the accesses are fulfilled by global memory while other high perfor-
mance resources are either insufficiently utilized or largely unused
(e.g., shared memory).

Finally, an important feature that is missing from existing work
is the support of updates. In STIG, the tree is constructed in host
memory and transferred to GPU global memory. In large datasets,
building a tree is costly, and cost of transferring data from CPU
to GPU is significant. The CPU communicates with GPU’s global
memory through a PCI-E buswhich is ofmuch lower bandwidth and
higher latency as compared to the global memory. For static data,
it is not an essential issue as tree construction and transferring is a
one-time cost. However, almost all location-based services involve
dynamic data and thus tree updates. Following the STIG approach,
the cost of handling updates will be extremely high as transmission
of the entire tree is needed every time there is an update to the
data. Another drawback of this approach is that query processing
cannot proceed without CPU intervention.

In this paper, we present a GPU-based Parallel Indexing frame-
work for Concurrent Spatial (G-PICS) query processing. G-PICS
processes a group of spatial queries at a time, with each query as-
signed to a thread. Query processing is accomplished in two steps.
In the first step, each query follows the traditional tree search path
and registers itself to all leaf nodes intersecting with its query range.
In other words, no data points are retrieved yet. In the second step,
we follow a query-passive design: for each leaf node, we scan its
data records only once, and distribute them to the list of queries
pre-registered with that leaf node. The highly-organized access to
data records yields great locality therefore can make good use of
GPU cache. Meanwhile, all the accesses to the global memory are
coalesced. G-PICS supports major spatial query types such as spa-
tial point search, range search, within-distance search, k-nearest
neighbors, and spatial joins. In addition, G-PICS encapsulates a
highly efficient parallel algorithm for constructing spatial trees on
GPUs. Furthermore, G-PICS provides an efficient parallel update
procedure on GPUs to support dynamic datasets. We conduct com-
prehensive experiments to validate the effectiveness of G-PICS. Our
experimental results show performance boosts up to 50X (in both
throughput and query response time) over best-known parallel
GPU and parallel CPU-based spatial query processing systems.
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Paper Organization: In Section 2, we review the work related to
the current problem; in Section 3 we introduce the new tree con-
struction algorithm developed in G-PICS; in Section 4, we demon-
strate the query processing technique in G-PICS; in Section 5, we
elaborate our algorithm to support dynamic updates in G-PICS; in
Section 6 we evaluate the performance of G-PICS, and in Section 7
we conclude the paper.

2 RELATEDWORK
In the past decade, researchers have taken advantage of the comput-
ing capabilities of GPUs to speed up computational tasks in many
application domains. In the database field, GPUs were exploited
in relational operations such as aggregations [15], and join [18].
Significant speedups were reported as a result of integrating GPUs
with databases in processing spatial operations [5]. Regarding the
focus of this research, most of the previous work that parallelized
queries on GPUs focused on parallelizing individual spatial queries
instead of treating the entire workload as a whole. Most of the
related work that used spatial data structures on GPUs focused
on computer graphics applications [13, 21, 22, 42]. The indexes re-
ported in such work are only for triangle partitioning and cannot be
used for spatial partitioning. Some other work used R-tree data in-
dexing for processing spatial range search queries on GPUs [39, 40].
Such work did not address key issues such as efficient construction
of a parallel R-Tree on GPUs, and finding a solution to distribute
the parallel tasks uniformly and efficiently among GPU threads.
Since quadtree data structure was shown to be highly compatible
with parallel architecture especially with GPUs [20, 28, 41], G-PICS
uses a point-region (PR) quadtree as the partitioning data structure
in 2-D space and oct-tree in 3-D space, although our ideas can also
be applied to other spatial data structures.

On the other hand, spatial data structure construction and up-
dating on GPUs are missing from most existing spatial query pro-
cessing on GPUs. In [28] an algorithm for parallel construction
of Bounding Volume Hierarchies (BVHs) on GPUs was developed.
PR quadtrees are simplified variations of BVHs in 2-D space. The
idea introduced in [28] was later used in [1, 24, 27] to convert the
PR quadtree construction on GPUs to an equivalent level-by level
bucket sort problem – quadtree nodes are considers as buckets
and input data points are sorted into the buckets based on their
locations at each level. In the suggested approaches, the nodes’
partitioning process at each level is parallelized by applying an out-
place quadtree bucket sort algorithm on the data list of the nodes
that have to get partitioned in that level– nodes that number of
points in them exceed maximum node capacity (MC) before reach-
ing maximum height (MH ) of the tree. In [27], the parallelization at
each level is done by assigning one thread to each node that should
get partitioned in that level; since the parallelization at higher level
is poor, the first few levels usually are built on CPU. In order to im-
prove this problem, in [24] each block of threads is assigned to one
node that should get partitioned at higher levels of the tree. This
idea was optimized by Nvidia to build a quadtree [1], in which each
block of threads is assigned to a node that has to get partitioned,
and each warp in a block works independently on building a child
node in the next level. Then, each overflow child node launches
another block of threads to build the next level of the tree from that

node using CUDA dynamic parallelism. However, since the number
of non-empty nodes is not known in advance, in [24, 27] in order
to allocate node memory for the next level of the tree, four times
of the number of nodes at the current level will be allocated for
the next level. In [1], node memory allocation is done in advance
by allocating the the maximum number of possible nodes based
on the input MH . There is no previous work directly targeted at
parallel data updates on spatial trees. In [31] a sequential algorithm
on CPUs for updating PR quadtrees in which the maximum node
capacity is equal to one was proposed. Their simulation mainly
concentrates on consecutive phenomena such as fluids and smoke,
in which if a point moves in a tree, it usually moves to its parent’s
sibling quadrants. The proposed updating procedure adaptively
divides or merges the simulation area based on data movement.
They show their approach outperforms two existing solutions for
handling the updates – constructing the tree from scratch, and
deleting a point from its current location and inserting to a new
location.

3 QUADTREE CONSTRUCTION IN G-PICS
As discussed earlier, in STIG, the tree is constructed in host memory
and then transferred to the GPU. The cost of building the tree
on host memory is high. More critical issue is the overhead of
transferring the tree from host to GPU - with its microsecond-
level latency and 10GB/s-level bandwidth [3], the PCI-E bus is the
weakest link in the entire GPU computing platform. Therefore,
the first step towards enabling G-PICS for efficient spatial query
processing lies in efficiently building a tree data structure within
the GPU. In this paper, we focus on the PR quadtree for indexing
2-D data as an example while our approach can be extended to other
types of quadtrees and oct-trees for 3D data. A PR quadtree is a
type of trie for spatially indexing data points in 2-D space, in which
each internal (link) node has at most four children. To construct
a quadtree, two user-specified parameters should be given: MC
and MH . Each node has a maximum capacity (MC), which is the
maximum number of data points in a node. If data points in a node
exceeds MC , the node is partitioned into four equal-sized child
nodes. This decomposition continues until there is no more node to
partition, or maximum height (MH ) of the tree is reached [17, 34].
Nodes that got partitioned are link nodes, and others are leaf nodes.
Oct-trees are analog of quadtrees in 3-D space.

There are unique challenges in parallel construction of a quadtree
on GPUs. The traditional way for such is done by parallelizing
the nodes’ partitioning process level-by-level [24, 27]. Clearly, the
scale of parallelism is very low at higher levels. Moreover, the total
number of non-empty nodes in the tree is generally not known in
advance. This issue causes a major problem as dynamic memory
allocation on the thread level carries an extremely high overhead
[18]. The easiest solution to tackle this problem which was adapted
in the previous work is allocating four times of the number of
nodes in the current level before developing the next level of the
tree. Consequently, empty nodes will expand until the very last level
of the tree. This results in inefficient use of (global) memory, which
is of limited volume on GPUs, and becomes more crucial when
dealing with skewed datasets. In addition, the main design goal of
G-PICS is to allow efficient query processing; hence, placing data
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Algorithm 1: G-PICS Tree Construction Routine
Var: splitNum (number of nodes to be partitioned)← 1 ,

Split (array to track nodes’ split status),
Cnode (array shows current node for each data point)← 0,
Curlevel (current level developing in the tree)← 1

1: Split[0]← True
2: while Curlevel < MH and splitNum > 0 do
3: Curlevel++;
4: Tree-Partitioning on GPU;
5: update splitNum
6: end while
7: Node-Creation on GPU;
8: Point-Insertion on GPU;

points belonging to a leaf node in consecutive memory locations is
the prerequisite of achieving coalesced memory access (Section 4).

Overview of G-PICS approach: To address above challenges, we
propose a top-down parallel tree construction onGPUs that achieves
a high level of parallelism at all times. Furthermore, our approach
resolves the problem of empty node expansions, and guarantees
coalesced memory access by storing the data points belonging to a
leaf node in consecutive memory locations.

G-PICS tree construction solves the empty node expansion prob-
lem on GPUs by delaying the actual node memory allocation until
the exact number of non-empty nodes in the tree is determined.
In particular, in the beginning, it is assumed that the tree is a full
tree according to its MH – in a full quadtree all the intermediate
nodes in the tree have exactly four children. The maximum number
of nodes in a full quadtree with height of H , can be calculated as
follows:

∑i=(H−1)
i=0 4i = (4H − 1)/(4 − 1) = (4H − 1)/3. Each node

in a full quadtree has an ID, which is assigned based on its posi-
tion in the tree. Starting from the root node with the ID equals to
zero, and allocating the directions based on the children location
(ranging from 0 to 3), an ID for each node is determined as follows:
Nodeid = (Parentid ∗ 4) + direction + 1, in which Parentid is the
ID of the node’s parent. Figure 3 shows a small (i.e.,MC = MH = 3)
example of G-PICS quadtree construction on a set of fourteen data
points distributed in a region.

The main idea behind G-PICS is a new parallelization paradigm
for quadtree construction on GPUs. This paradigmmaintains a high
level of parallelism by novel workload assignment to GPU threads.
Instead of binding a thread to a tree node, each G-PICS thread is
assigned to one input data point, and the process of locating the
node to which each point belongs is parallelized. Each thread keeps
the ID of such nodes and such IDs are updated at each level till a leaf
node is reached. The tree construction (Algorithm 1) is done in three
steps via three GPU kernels: Tree-Partitioning, Node-Creation, and
Point-Insertion. In the following discussions, we assume the entire
tree plus all the data can fit into the global memory.

Tree Construction Routines: The Tree-Partitioning kernel (Algo-
rithm 2) is launched with N threads, with each thread working on
one data point. Starting from the root node, each thread finds the
child node to which its assigned point belongs, and saves the child
node ID. Meanwhile, the thread also increments the value of the

Algorithm 2: Tree-Partitioning on GPU
Global Var: Input (array of input data points),

Counter (array to reflect the number of points in each node)
Local Var: t (Thread id),

Lcounter (counter value after adding a point to a node)
1: for each Input[t] in parallel do
2: if Split[Cnode [Input[t]]] == True then
3: Cnode [Input[t]]← find position of Input[t] in the

children of Cnode [Input[t]]
4: Lcounter ← atomicAdd(Counter [Cnode [Input[t]]], 1)
5: if Lcounter ==MC+1 then
6: Split[Cnode [Input[t]]]← True
7: end if
8: end if
9: end for

current node’s data point counter. Since such counts (i.e., counter
array) are shared among all threads, we use atomic instructions pro-
vided by CUDA programming environment to update the counts
and maintain correctness. When the counts are updated, if a node’s
data count exceeds MC andMH of the tree has not been reached
yet, the corresponding value in the split array will be set, meaning
that the node should get partitioned in the next level of the tree.
Upon finishing operations at one level (for all threads), the follow-
ing information can be seen from auxiliary arrays: current node
array indicates the nodes to which data points belong, node counter
array reflects the number of data points in each node, and split array
indicates if each node has to be partitioned. If there are nodes to be
partitioned, the same kernel is executed again to develop the next
level of the tree. For example, in Figure 3, there are two nodes –
N2 (with 5 points) and N3 (with 7 points) – to be partitioned when
level 2 of the tree is built. The kernel is relaunched with three new
auxiliary arrays, the length of which correspond to the number
of the child nodes of only N2 and N3. Likewise, data counts and
the split of the nodes in this level are updated. This routine will
continue until there are no more nodes to be split, or the MH of
the tree is reached. This tree construction paradigm maintains a
high level of parallelism by having N active threads at each level.

The Node-Creation kernel (Algorithm 3) is called to create the
actual non-empty nodes in the tree. Having finished the previous
step, the following information is known: each point has the leaf
node to which it belongs, the total number of non-empty nodes in
the entire tree with their types (leaf or link), and the total number
of points in each leaf node. Therefore, the required information for
creating the nodes in a parallel way and without wasted space is
known. Consequently, the Node-Creation kernel is launched with
as many threads as the number of nodes, and non-empty nodes are
constructed in parallel. While building nodes, point memory for leaf
nodes data list in consecutive memory locations is also allocated.
In Figure 3, the total number of non-empty nodes is 11 (versus the
full quadtree which has 21 node in this example). Consequently,
space for only 11 nodes is allocated in this example. Out of the 11
nodes, eight are leaf nodes (split is False), and three of them are
link node (split equals to True).
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Figure 3: An example of quadtree construction in G-PICS with MC = MH = 3. Auxiliary arrays with the length equals to the maximum
number of nodes in a full tree are allocated on GPU and deleted when the tree construction is completed.

Algorithm 3: Node-Creation on GPU
Global Var: NodeID (array holding IDs of nodes),

lea fdatalist (array to store data points in leaf nodes)
Local Var: t (Thread id)
1: for each non-empty NodeID [t] in parallel do
2: create node NodeID [t]
3: if Split[NodeID [t]]== False and Counter [NodeID [t]] > 0

then
4: Allocate consecutive memory of size

Counter [NodeID [t]] in lea fdatalist
5: end if
6: end for

The Point-Insertion kernel (Algorithm 4) is called to insert the
input data points to tree. Each thread takes one point, and inserts
that point to its corresponding leaf node’s data list. Having this
setup, all the points in each leaf node are saved in consecutive
memory locations. The input data points in a quadtree have two
dimensions (x, and y). To ensure coalesced memory access in query
processing, the data lists should be saved using two arrays of single-
dimension values rather than using an array of structures which
holds two-dimensional data points. The final quadtree structure
built using the aforementioned algorithm is shown in Figure 4, in
which each leaf node points to the beginning of its data list in the
leaf nodes data list array.

4 G-PICS QUERY PROCESSING
In this section, we elaborate on query processing algorithms in
G-PICS. As mentioned earlier, G-PICS supports multiple spatial
queries running concurrently to improve resource utilization and
overall efficiency. G-PICS provides support of the following major
spatial query types: (1) spatial point search, which retrieves the
existence of an object in the input data set, (2) range search, which
finds a set of data objects within specific region of rectangular

 
 

Root Node Link Node Leaf Node

3 13 5 12 0 9 8 1 6 4 7 10 2 11Leaf nodes data list

Figure 4: Final quadtree built based on the data inputs in Figure 3

Algorithm 4: Point-Insertion on GPU
Local Var: t (Thread id)
1: for each Input[t] in parallel do
2: insert Input[t] to lea fdatalist [Cnode [Input[t]]]
3: end for

shape, (3) within-distance search, which retrieves objects within a
certain circle in which the input search query is the center of that
circle and search distance determines the radius of the circle, (4)
k-nearest neighbors, which is a direct generalization of the nearest
neighbor problem, where k closest objects to the input query will
be retrieved, and (5) spatial join, which retrieves all pairs of objects
in the input dataset satisfying the search condition. A typical spatial
query is processed in two steps:

(1) leaf nodes satisfying the search conditions are identified; and
(2) all data points in the identified nodes are examined to determine
the final results.
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Figure 5: An example of registering three within-distance
search queries into the query lists of leaf nodes

Recall that in the first step, using the traditional tree search is
necessary to achieve logarithmic work efficiency. Moreover, in the
second step, reading the data records should be done through global
memory, and the same data record can be accessed many times
by different queries in a workload. To tackle these issues, G-PICS
introduces a new paradigm for processing multiple spatial queries
concurrently on GPUs in two steps. All the spatial input queries in
a workload are considered as input query list (QL). All the input
queries in theQL share the same processing strategy using the two-
step query processing. In the first step, all queries have to find their
intersecting leaf nodes using a traditional logarithmic tree search,
and in the second step, they have to process their intersecting leaf
nodes’ data lists to output their final results. This common strategy
provides the opportunity for batch query processing. The most
expensive part in query processing is reading the intersecting leaf
nodes’ data lists for each query from GPU’s global memory. To
minimize this cost as much as possible, we use a common scanning
process to read the data lists. Therefore, queries that access the
same data list can be served together. To this end, we design a
new query processing strategy in G-PICS in which in the first step
of query processing, queries intersecting the same leaf node are
grouped together. Then, in the second step, queries in each group
are processed together to minimize accesses to global memory, and
take advantage of the other available low-latency memories on
GPUs.

In order to group the queries together, a set of query lists are
added to the tree data structure. Each query list is attached to a leaf

Algorithm 5: Leaf-List-Processing on GPU
Local Var: b (Block id), t (Thread id in a block), M (total number of

points in the leaf[b]), lqL (query list attached to the leaf[b]), sL (list of
points in shared memory)

1: sL← load leafdatalist [leaf[b]] from global memory to shared
memory in parallel

2: for each lqL[t ] in parallel do
3: for i = 1 to M do
4: d ← computeSearchFunction(lqL[t ], sL[i])
5: if d meets the search condition then
6: Add sL[i] to the Output list of lqL[t ]
7: end if
8: end for
9: end for

node for saving the list of queries intersecting that leaf node for
processing. Two GPU kernels are designed in G-PICS to perform the
two-step query processing: Leaf-Finding, and Leaf-List-Processing.

Step I - Query Registering: In the Leaf-Finding kernel, each thread
takes one query from QL, and registers that query to the query
lists of all the identified leaf nodes through traditional tree search
algorithm. After finding the intersecting leaf nodes for all queries,
each leaf node has a query list of registered queries that should
retrieve the data records in that leaf node to output their final
results. Figure 5 shows an example of registering queries into the
query lists of the leaf nodes for three within-distance search input
queries.

Step II - Leaf Node Processing: To process the registered queries
in the query list of the leaf nodes, the Leaf-List-Processing kernel
is launched with as many GPU blocks as the number of leaf nodes.
Each leaf node is assigned to one GPU block. The maximum number
of active threads in each block is equal to the number of registered
queries in the query list of the leaf node that is assigned to that
block. In order to output the results, all the queries in a leaf query
list have to read the data records in that leaf node and based on
their query types perform the required computation. Therefore,
in each GPU block, first, all the data points belonging to the leaf
node assigned to that GPU block is copied from global memory
to shared memory in parallel. Shared memory is much faster than
global memory - its access latency is about 28 clock cycles (versus
global memory’s 350 cycles) [2]. The copying from Global memory
to the shared memory is not only parallelized, but also coalesced
because points in each leaf node are saved in consecutive memory
locations. Using this strategy, the number of accesses to each leaf
node data lists in global memory are reduced to one. This is in
sharp contrast to the traditional approach that retrieves each leaf
node once for each relevant query. Having copied all the points in
each leaf node data list to the shared memory, each active thread
in that block takes one query from the query list attached to its
corresponding leaf, copies the query point into a register, calculates
the computation function (which is usually Euclidean distances
computation) between that query point and all the points in that
leaf node (which are all located in share memory), and outputs those
that satisfy the search criteria. This step is shown in Algorithm 5.
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Algorithm 6: Second step of spatial join
Local Var: b (Block id), t (Thread id in a block), M (total number of

points in the leaf[b]), lqL (query list attached to the leaf[b]),
N (total number of registered leaf node in lqL), d (search distance),
dLi (list of points in leaf node i )

1: dLb ← leafdatalist [leaf[b]]
2: for each dLb [t] in parallel do
3: for i = t+1 to M do
4: r ← computeDistanceFunction(dLb [t ], dLb [i])
5: if r<= d then
6: Add dLb [i] to the Output list of t
7: end if
8: end for
9: end for
10: for j = 1 to N do
11: dLj ← leafdatalist [leaf[lqL[j]]]
12: for k = 1 to dLj .numberOfPoints do
13: r ← computeDistanceFunction(dLb [t ], dLj [k])
14: if r<= d then
15: Add dLj [k] to the Output list of t
16: end if
17: end for
18: end for

Query Implementation Details. The point search, range search,
and within-distance search are implemented following the 2-step
approach in a straightforward way. The kNN in G-PICS is treated
as a within-distance search followed by a k-closest selection from
the within-distance search result set. The within-distance search is
initialized with a small radius. If the number of output items for a
query is less than k , the within-distance search will be performed
again with a larger radius until it has enough (k) outputs. We im-
plement a special type of spatial join named the 2-Body constraints
problem which retrieves all pairs of objects that are closer than a
user-specified distance (d) from each other. In the first step of the
spatial join search, each leaf node registers itself to the query list
of all other leaf nodes with distance less than or equal to d . Then,
in the second step of the search (Algorithm 6) all matching pairs
are retrieved and outputted.

Outputting Results. A special challenge in GPU computing is that,
in many applications, the output size is unknown when the GPU
kernel is launched. Examples of such in G-PICS are the number of
output results in a typical window range query, within-distance
query, and spatial joins. The problem comes from the fact that mem-
ory allocation with static size is preferred - in-thread dynamic mem-
ory allocation is possible but carries a huge performance penalty
[18]. This causes a serious bottleneck in those applications. A typi-
cal solution is to run the same kernel two times; in the first round,
output size is determined. Then, in the second run, the same algo-
rithm will be run again and output will be written to the memory
allocated according to the size found in the first round. In G-PICS,
we utilized an efficient solution introduced in our previous work
[33], which allows our algorithms to compute and output the results
in the same round for those categories of queries that their output
size is unknown in advance using a buffer management mechanism.
This design minimizes threads synchronization. In this design, an
output buffer pool with a determined size is allocated. The allocated

memory is divided into small chunks called pages. In order to have
access to the location of the first available page in the buffer pool,
a global pointer (GP) is kept. Each thread gets one page from the
buffer pool and outputs its results to that page. It also keeps track
of its own local pointer to the next empty slot within that page.
Once a thread has filled a page completely and has more results, it
will get a new page from the buffer pool by increasing a GP using
the GPU atomic add operation. Using this solution, conflicts among
threads is minimized because GP is updated only when a page is
completely filled.

5 TREE UPDATES IN G-PICS
While support for dynamic data inputs are missing from existing
GPU-based spatial tree work, G-PICS provides an efficient parallel
update procedure on GPUs to support dynamic datasets. Moving
a data point in a quadtree can be summarized by a deletion fol-
lowed by an insertion. However, this operation can be expensive
considering the nature of quadtree structure and data movements,
especially when there are group movements. By moving a data
point in the tree, the tree data structure, and leaf nodes’ data lists
should be updated accordingly. Both of these operations are costly
because dynamic memory allocation on the thread level carries an
extremely high overhead on GPUs. At the end of each move, a data
point can either stay in the same leaf node or move into another
one. After all movements, the number of points in some leaf nodes
may exceedMC . Consequently, ifMH is not reached, those nodes
should be partitioned, and points in them moved to their children.
Alternatively, sibling leaf nodes could lose data points and their
total number of data points go below MC . In these cases, the sib-
lings should be merged together, and data points in them moved to
their parent nodes. Moreover, there may be cases that points move
into an empty node. It was mentioned earlier that empty nodes are
not materialized in our tree structure. Therefore, first new nodes
should be built to represent the region that was empty in that direc-
tion, and then points should be inserted. All these changes usually
happen at the lowest levels of the tree.

Figure 6 shows an example of these scenarios: Figure 6(a) shows
the tree structure before data movement and Figure 6(b) shows
that after movements. The movements in this tree are as follows:
P5 and P0 moved to N1, P9 moved to an empty node, and all other
points did not move out from their last-known leaf node in the tree.
After all these movements, the number of points in N1 exceedsMC .
Therefore, N1 should get partitioned, and points in that node moved
to its children. On the other hand, the total number of points in
N9,N10,N11, and N12 is less thanMC . Therefore, these four sibling
nodes should be merged together, and points in them moved to
their parent (N2). Since P9 moved to an empty node, first a node
should be built in that region. The final tree structure after all the
updates is shown in Figure 6(b).

Bulk Updates in G-PICS. We design a bottom-up parallel algo-
rithm on GPUs to bulk update the tree structure. This, again, reflects
our strategy of concurrent processing of queries except now a query
is an update. At first, the new position of all the input data points
are checked in parallel to see if they moved out from their last-
known leaf node in the tree. If there is at least one movement, the
tree structure should be updated accordingly. Updating the tree



SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Zhila Nouri and Yi-Cheng Tu

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13 P0

N13 N14

N15 N16

N4
P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13
P0

N9 N10

N11 N12

N13 N14

N15 N16

N1

 (a) Tree structure before movement (b) Tree structure after movement

N5 N6

N7 N8
N2

Figure 6: An example of quadtree update for MC = 3 and MH = 4
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Figure 7: Quadtree update procedure in G-PICS

structure may lead to partitioning, merging, or creating nodes in
the tree. Several GPU kernels are designed to update the tree in
parallel on GPU as follows: Movement-Check, Leaf-Finding, Node-
Partitioning, Node-Merging, and Leaf-Lists-Update.

TheMovement-Check kernel checks if each data point hasmoved
out from its last-known leaf node. In this kernel as many threads as
N are launched, each thread takes one point, and checks if that point
has moved out from its last-known leaf node. In case of movement,
the corresponding thread adds the point to the list of moved data
points, and updates the counter of the number of points in the
last-known leaf node. Having finished this kernel, if there is at least
one movement, the tree structure and the data lists of leaf nodes
have to be updated accordingly.

The Leaf-Finding kernel is called if the list of moved data points
is not empty. This kernel is launched with as many threads as the
number of moved data points. Each thread gets one point from the

list of moved data points, finds a new leaf node for that point in the
tree, updates the number of points in the new leaf node, and saves
that leaf node as a new location for its corresponding point. If by
updating the number of points in a leaf node the total number of
points in that leaf node exceedsMC andMH has not been reached,
that node is added to the list of nodes that should be partitioned.
On the other hand, there may be points that move to empty nodes.
These points are added to another list; then, first new nodes are
created in the corresponding directions, and afterwards those points
are added to the newly-created nodes. When data points spread
out evenly in the input space, this case is very rare; however, to
have a robust design, this case is also considered in G-PICS. New
nodes creation is done in parallel, and data points insertion into
those nodes is also done in parallel. Meanwhile, if by updating the
nodes’ counters, the number of points in a node exceedsMC , that
node is added to the list of nodes that should be partitioned.

The Node-Partitioning kernel is called if the node partition list
is not empty. This kernel is launched with as many threads as the
number of nodes in that list. Each thread takes one node, creates
child nodes for that node, and sets up the parameters for them. The
points belonging to the partitioned nodes should be moved to the
data list of the newly-built child nodes. There are two groups of
points that may belong to nodes in the partition list: points that
previously belonged to those leaf nodes, and did not move out,
and points from moved data list that moved to those nodes during
their movement. To minimize the computation and maximize the
efficiency, extra operations should beminimized asmuch as possible.
Therefore, just these two groups of points are considered for the
sake of finding new locations in the children of partitioned nodes.
While updating the counters of child nodes, if a node becomes
qualified for partitioning, that node is added to the split nodes’ list.
The above steps will repeat for new nodes in the split list until there
is no more nodes to be partitioned.

On the other hand, while some nodes are to be partitioned, there
may be other nodes that have to be merged. Except the leaf nodes
that get partitioned, other leaf nodes have the potential of getting
merged. The Node-Merging kernel considers those leaf nodes by
checking the sum of the counter of sibling leaves. If the total number
of points in those nodes become less than or equal to MC , they are
added to the list of nodes that has to be merged. Siblings in this
list are merged together, and their data points are moved to their
parent. Consequently, those parent nodes become the new leaves.
The algorithm of moving points in these nodes is similar to the
one in Node-Partitioning kernel. However, the only difference is
that in this part the points should be moved to the parent of their
last-known leaf node.

Having finished all these steps, each point has the final leaf node
to which it belongs, and each leaf node has the total number of
points in its data point list. Since deletion and insertion by shifting
is very costly on GPUs, data lists in leaf nodes can be updated
by reinsertion from scratch. Therefore, Leaf-Lists-Update kernel
is called to insert data points into their corresponding leaf nodes
using the same procedure mentioned in the tree construction. The
work-flow of the entire tree update procedure is shown in Figure 7.
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6 EXPERIMENTAL RESULTS
In this section, we present empirical evaluation of the performance
of G-PICS. For that, we implemented a CUDA version of G-PICS as
well as processing algorithms for the following queries: window-
based range search, within-distance search, k-nearest neighbors,
spatial point search, and spatial joins. We conduct experiments on
a workstation running Linux (Ubuntu 16.04 LTS) with an Intel Core
i9-7920X 2.90GHz CPU with 12 cores, 64GB of DDR4 3200 MHz
memory, and an Nvidia Tesla P100 GPU (16GB global memory).

As mentioned earlier, G-PICS is designed to process a (large)
group of spatial queries at a time. Two baseline algorithms for pro-
cessing multiple concurrent queries are developed: a parallel CPU
algorithm (P-CPU), andM-STIG. M-STIG is a task parallel GPU algo-
rithm for processing multiple queries at a time developed following
the descriptions in STIG [12] for processing one query at a time. We
implement the P-CPU algorithms in the C programming language
using OpenMP. Note that P-CPU is highly optimized, and performs
a traditional tree search in the first step of query processing to bear
the logarithmic work efficiency. Moreover, additional techniques
for improving the P-CPU performance using OpenMP are also ap-
plied including: choosing the best thread affinity for the thread
scheduler, best thread scheduling mode, and best number of active
threads per simulation. Furthermore, both GPU implementations
(G-PICS and M-STIG) are highly optimized in terms of efficient
use of registers, choosing the best block size in each GPU kernel.
Such optimizations are done according to our previous work in
GPU kernel modeling and optimization [29]. G-PICS tree construc-
tion performance is evaluated by comparing the performance with
parallel quadtree construction code developed by Nvidia which is
available at [1]. All the experiments are conducted over two types
of data: a real dataset [10] generated from a large-scale molecular
simulation study of a lipid bi-layer system, 1 and synthetic datasets.
A visualization of the real dataset indicates that the data points
are almost uniformly distributed in space. The synthetic data,
on the other hand, is generated following a Zipf distribution under
different orders to generate highly skewed datasets.

6.1 Tree Construction in G-PICS
The parallel tree construction codes introduced by [24, 27] are not
publicly available. Therefore, we implemented the algorithms fol-
lowing their descriptions; however, their algorithms showed very
poor performance comparing to ours (G-PICS achieves more than
one thousand performance speedup over them). This indicates that,
due to very poor level of parallelism and inefficient memory swap-
ping for allocating points into relevant quadtree nodes at each level
the above academic codes can hardly represent the state-of-the-art
in GPU quadtree construction. In such experiments, only the tree
construction time is measured and compared. Consequently, to have
a more meaningful evaluation, we compare G-PICS tree construc-
tion with the parallel tree construction developed by Nvidia [1].
Figure 8 shows the G-PICS tree construction time, and performance
speedup of G-PICS tree construction over Nvidia [1]. As shown,
G-PICS clearly outperforms the Nvidia (up to 53X) in all cases. By

1The dataset contains the coordinates of 268,000 atoms recorded over 100,000 time
instances. We superimpose the coordinates of different time instances to generate data
of an arbitrary (large) size for experimental purposes.
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Figure 8: G-PICS tree construction time, and speedup of G-PICS
tree construction over the Nvidia code. Left: real dataset; Right:
skewed dataset

increasing the number of input data points, G-PICS speedup in-
creases, and it remains constant at very large input datasets. Note
that in G-PICS points belonging to a leaf node are saved in consec-
utive memory locations. For the real data with a nearly uniform
spatial distribution, G-PICS shows better performance advantage.
For the skewed data, G-PICS Point-Insertion kernel takes longer
to run. The main reason for G-PICS’ high performance is the new
parallelism paradigm that maintains a high level of parallelism at
all times. Moreover, G-PICS does not materialize the empty nodes.
In addition, while building the tree in G-PICS, ifMH is reached, leaf
nodes atMH will accommodate more points thanMC . However, in
Nvidia the algorithm will stop working. Therefore, the Nvidia tree
construction should be initialized with a large MH to make sure
the tree construction works properly which leads to more empty
node expansion.

6.2 Spatial Query Processing in G-PICS
As the query processing in G-PICS and M-STIG is done in two steps,
the performances of both steps, as well as the overall performance
are compared. Each dataset has 9.5 million data points, which are
indexed using the parallel quadtree construction mechanism of G-
PICS. TheMC is set to 1024, andMH is set to 12. The batch query
processing performance is evaluated for different number of input
queries. In the following text, we report and analyze two perfor-
mance metrics: (1) the relative total processing time (i.e., speedup)
used for processing all such queries by G-PICS over baseline codes
(i.e., M-STIG and P-CPU); and (2) the minimum, maximum, and
average response time of all queries achieved by all three programs.

6.2.1 Range Search. Range (window-based) search queries are
highly compatible with quadtree data structure, since in the first
step of the search, the intersection of rectangles (input query and
quadtree nodes) should be evaluated. The output size of a typical
range search is unknown in advance; we therefore use the buffer
pages solution discussed in Section 4 to do the computation and
outputting the results in the same round (in both G-PICS, and M-
STIG). Figure 9 shows G-PICS query processing time along with its
speedup over the baseline codes in processing range search queries.
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Figure 9: G-PICS range search query processing time, and speedup
of G-PICS over M-STIG and P-CPU in processing range search
queries. Left: real dataset; Right: skewed dataset

However, in other spatial query processing due to page limits just
speedup is shown. Figure 9 shows that logarithmic tree search in
the first step noticeably outperforms the brute-force leaf search
under any circumstances. The performance speedup is even more
remarkable in skewed dataset because the input queries may inter-
sect with fewer leaf nodes. The considerable performance boost is
certainly in conformity with our understanding of using logarith-
mic tree search over brute-force. The performance of the second
step of G-PICS (Figure 9) is more obvious as the number of concur-
rent queries increases. It starts with a small number under very low
concurrency, climbs rapidly (in a linear manner) by increasing the
number of input queries in both datasets, and stabilized gradually.
This rapid growth is the result of sharing shared memory by more
queries and reducing the total number of accesses to global memory.
Finally, the overall speedup of G-PICS over M-STIG and P-CPU
(Figure 9) increases substantially by increasing the number of input
queries and remains stable eventually. This level off is the result
of having more queries in each query list. Consequently, it takes
longer to process the queries and output the results.

6.2.2 Within-Distance Search and kNN. It was mentioned ear-
lier that kNN in G-PICS is treated as a within-distance search,
followed by performing the k-closest selection in the results of
within-distance search. The selection kernel for finding kNN is the
same in G-PICS and M-STIG. Therefore, within-distance search
operation is a determining factor in the performance evaluation.
Similar to range search, the output size of a within-distance search
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Figure 10: Speedup of G-PICS over M-STIG and P-CPU in process-
ing within-distance search queries. Left: real dataset; Right: skewed
dataset

is not known in advance; consequently the buffer pages solution
is used for outputting the results. The range of intersect in a typi-
cal within-distance search is a circle versus a rectangle in a range
search query. Therefore, the graphs in Figure 10 for evaluating the
performance of within-distance search queries in G-PICS follow
the same trend as those presented in range search.

6.2.3 Spatial Point Search. Comparingwith other types of queries,
there is less computation involved in processing point search queries.
In the first step of the search, each query just intersects with one leaf
node, therefore, logarithmic tree search speedup over brute-force
leaf search presents the most significant improvement comparing
to the other query types (Figure 11). On the other hand, although
the speedup of the second step follows an upward trend, it shows
less performance increase comparing with the second step of other
query types. This reduction is because less computation involved in
processing point search queries. However, the first step of M-STIG
is very slow, therefore the overall performance speedup of G-PICS
over M-STIG climbs sharply. Likewise, G-PICS shows a gradual
upward performance rise over P-CPU. However, in processing this
type of queries, P-CPU outperforms M-STIG. Note that comparing
to the other query types, it takes much longer to see the level off in
G-PICS point search speedup. This happens because in the first step
of search each query is registered to one query list. Consequently,
it takes longer to have a longer query list in each leaf node.

6.2.4 Spatial Join. In order to evaluate the performance of spa-
tial join, we implemented the 2-Body constraints problem that
retrieves all pairs of objects that are closer than a determined dis-
tance (d) from each other in the input domain. In processing this
type of queries, the second step of the search for G-PICS and M-
STIG is the same (Algorithm 6). Consequently, the first step of the
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Figure 11: Speedup of G-PICS over M-STIG and P-CPU in process-
ing point search queries. Left: real dataset; Right: skewed dataset
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Figure 12: G-PICS spatial join performance speedup over M-STIG
under d = 100 angstrom. Left: real dataset; Right: skewed dataset

search determines the overall performance. The cost of query regis-
tering in the first step is constant in M-STIG regardless of d . Figure
12 shows the overall performance comparison of the G-PICS over
M-STIG with variable distances. In real dataset, achieved speedup
in G-PICS decreases gradually by increasing d . This is the result
of visiting more leaf nodes in the search. However, in the skewed
dataset, this trend has more fluctuation because some parts of the
tree has more data congestion due to data skewness.

6.2.5 Performance under low concurrency. As a special note,
even when the number of input queries is small, G-PICS still out-
performs M-STIG and P-CPU in processing all query types. In
particular, under concurrency of one in processing range search
and within-distance search, G-PICS shows a speedup of at least 20X
and 10X over M-STIG and P-CPU, respectively. For point search
query, the speedup is 28X and 7X over M-STIG and P-CPU, respec-
tively. This demonstrates the importance of conducting logarithmic
tree search.

6.2.6 Response Time Analysis. As discussed earlier, STIG pro-
cesses one query at a time while G-PICS parallelizes many queries
together. One might argue that while G-PICS achieves much higher
throughput, it could suffer from poor (individual) query latency –
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Figure 13: Relative Response (RR) Time of range search queries
processed by G-PICS over that by STIG. Left: real dataset; Right:
skewed dataset

queries have to wait till the batch is formed. This is true if we look
at the minimum response time (Figure 13, top) among all queries
processed: such number could be two orders of magnitude higher
in G-PICS. Note that minimum response time among all queries is
similar to average and maximum response time in G-PICS (due to
batch processing) while the first few queries in STIG could have
a very short response time. However, the average response time
(Figure 13, middle) of G-PICS queries is much better than in STIG,
with an improvement of nearly 1000X depending on the query
numbers in QL. The maximum response time has the same trend
as average response time (Figure 13, bottom), however, with much
sharper rise. Therefore, although the first few queries in STIG run
faster, it takes so long to process the entire workload. Therefore, in
systems with concurrent queries G-PICS always outperforms STIG.
The above data is collected under low concurrency and for range
search queries only. However, in busier systems the improvement
of response time by G-PICS is much more considerable. The same
trends can be observed in processing other query types.

6.3 Tree Update Performance in G-PICS
In order to support dynamic datasets, the constructed tree structure
should be updated based on the input data points movement. In
order to evaluate the performance of the designed update procedure,
each time we change the positions of a specific percentage of the
input data points to new randomly-generated positions. Then, the
tree is updated accordingly. To evaluate the performance, the time
takes to update the tree is compared with time to construct the tree
from scratch in G-PICS (as no other work can be found in GPU-
based tree updates). Figure 14 shows the speedup of the tree update
algorithm over tree construction from scratch. At low movement of
input data, the G-PICS update procedure can be up to 150% faster
than tree construction from scratch. By increasing the number
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Figure 14: G-PICS update performance over G-PICS tree construc-
tion from scratch. Left: real dataset; Right: skewed dataset

of movements, the update performance decreases. However, even
when all the input data points change their positions, the G-PICS
update procedure is still more efficient.

7 CONCLUSIONS
In this paper, we argue for the importance of GPUs in spatial
query processing, especially in applications dealing with concur-
rent queries over large input datasets. It was shown that parallelism
and spatial indexing are the prerequisite of achieving high per-
formance in processing such queries. To this end, we present a
GPU-based Parallel Indexing framework for Concurrent Spatial
(G-PICS) query processing. G-PICS provides a new tree construc-
tion algorithm on GPUs, which achieves a high level of parallelism
and shows a magnitude performance boost over the best-known
parallel GPU-based algorithms. Moreover, G-PICS introduces the
new batch query processing framework on GPUs to tackle the low
work efficiency and low resource utilization existing in current
one-query-at-a-time approaches. G-PICS supports the processing
of major spatial query processing, and shows a great performance
speedup over the best-known parallel GPU and parallel CPU-based
spatial processing systems. In addition, G-PICS provides an efficient
parallel update procedure on GPUs to support dynamic datasets.
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