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ABSTRACT
Spatial query processing involves complex multidimensional
objects and compute intensive spatial operations, and there-
fore requires a high performance approach to meet the rapid
data analytics requirements of modern spatial applications.
Recently, MapReduce based spatial query systems have be-
come a viable solution for many data intensive query tasks,
and gained widespread adoption in both academia and in-
dustry. At the same time, GPUs have been successfully
utilized in many applications that require high performance
computation. Both approaches, GPU and MapReduce, have
their own limitations and advantages, and have been sep-
arately utilized in spatial query processing tasks to boost
application performance. However, it is unclear that how
MapReduce and GPU, two vastly different parallelization
techniques, can be fused together to effectively deal with the
spatial big data challenges. In this paper, we explore such
synergy of parallelization techniques for large scale spatial
query processing. We extend Hadoop-GIS, a MapReduce
based spatial query system, and provide GPU accelerated
spatial query processing capability at the engine level. We
evaluate the system on a real world dataset, and demon-
strate that GPU accelerated system can gain considerable
performance improvements. We also show how other fac-
tors such as partition granularity, task scheduling between
CPU and GPU can impact the query performance.
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1. INTRODUCTION
In a wide range of application domains, data is being col-

lected at an unprecedented scale, and used to drive inno-
vation and business success. Scientific research and busi-
ness decisions, that used to be based on limited amount of
information or complete guesswork, now can be performed
more effectively in a data-driven manner by utilizing massive
amounts of data.

Data analytics on spatial and spatio-temporal data is one
of the fast growing areas in the Big Data landscape that
is increasingly suffering from inability to deal with massive
amounts of data using traditional analytics systems. Re-
cently, MapReduce [12] based data processing systems have
emerged as a viable solution to the big data challenges of
our time. By partitioning the data and running queries in
parallel on large number of commodity hardware, MapRe-
duce achieves high scalability and fault tolerance at low cost.
Spatial data analytics [7, 13, 20, 23] also benefits from the
rising tide of MapReduce, and conventional systems start to
embrace the approach [1].

MapReduce is a simple and effective parallelization ap-
proach for many large scale query processing tasks. Pre-
vious research on spatial query workload characterization
shows that spatial queries are a lot more compute-intensive
than conventional non-spatial query workloads [25]. While
MapReduce can effectively address data-intensive aspects of
large scale spatial queries, it is not well suited to handle
compute-intensive aspect of spatial queries. The multidi-
mensional nature of spatial data analytics and the complex-
ity of spatial queries requires a high performance approach
that can leverage parallelism at multiple levels for query
processing. In recent years, GPGPU has become main-
stream as many-core computer architecture and program-
ming techniques become mature. Now, a single machine
may be equipped with multiple processors, e.g., multi-core
CPUs and GPUs, and such hardware configurations is read-
ily available on major cloud computing platforms. In the
coming years, such heterogeneous parallel architecture will
become dominant, and software systems must fully exploit
this heterogeneity to deliver performance growth [10].

In this paper, we study opportunities for such synergy be-
tween two different parallelization techniques, MapReduce
and GPU, for large scale spatial query processing. Build
upon a major MapReduce based spatial data warehousing
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system Hadoop-GIS [7, 6, 5, 4], we developHaggis –Hadoop-
GIS accelerated with a GPU engine. Due to the differ-
ence in the parallelization model, there are several problems
that need to be addressed to leverage the available com-
puting power of hybrid systems. First, integration of two
programing models is not trivial. Previous research efforts
[16] propose to modify the MapReduce programming model
to bring those two parallelization frameworks together in
a unified framework. In Haggis, we take a decoupled ap-
proach in which the GPU is used as an engine accelerator
without modifying the underlying MapReduce programming
model. Second, as GPU computation requires the data to
be moved to the device memory which incurs off-chip mem-
ory movement cost. Such data movement needs to be well
orchestrated to reduce the I/O cost and fully exploit the
computation power of GPU. Third, to achieve best system
performance, the task scheduler needs to judiciously place
tasks on CPU or GPU, so that the system resource is fully
utilized. There are several design decisions towards building
an integrated system, and we dicuss those issues in detail in
this paper.

The rest of the paper is organized as follows. We describe
the characteristics of spatial query processing and motiva-
tions of our work in Section 2. The system design is pre-
sented in Section 3. We empirically evaluate the proposed
solution in Section 4. The related work is discussed in Sec-
tion 5, and we conclude the paper in Section 6.

2. BACKGROUND

2.1 Characteristics of Spatial Queries
Most spatial queries are compute-intensive [25] as they in-

volve geometric computations on complex multi-dimensional
spatial objects. Spatial objects have complex extent that
generally described with multi-dimensional data points. For
example, typical spatial objects such as lines and polygons
are represented with a set of points in a two dimensional
space (in a 2D Euclidean coordinate system), and those data
points are stored and processed together. Therefore, even
simple operations on those objects incur considerable com-
putation cost and I/O cost.

To avoid the high cost of the geometry computation and
reduce unnecessary disk I/O, spatial queries employ a filter-
and-refine strategy in which queries are processed in two
phases [21]. During the filter phase, spatial objects are
approximated with minimum bounding rectangles (MBRs),
and objects that do not satisfy the query predicates even
on the MBRs are eliminated. During the refinement step,
candidate objects from the filter step are processed with
real geometric operations, and the objects that satisfy the
query predicates are reported as final query results. While
spatial filtering through MBRs can be accelerated through
spatial access methods, spatial refinements such as polygon
intersection verification are highly expensive operations. For
example, spatial join queries, such as spatial cross-matching
or overlaying of multiple sets of spatial objects on an im-
age/map, can be very expensive to process.

i/o parse index filter refine

Figure 1: Spatial join query processing pipeline

To illustrate the high computational cost of spatial queries,
we run a single threaded spatial join query on a small dataset.
We process the join query in five steps, and figure 1 illus-
trates the query processing pipeline. During the i/o step,
we read in two sets of polygons from a file that resides on the
hard disk (10838 polygon objects); during the parse step, we
parse polygon objects and transform them from text repre-
sentation (WKT) into an in-memory data structure; during
the index step, we construct two Hilbert R-Tree indexes,
one index for each set of polygons, using bulk loading meth-
ods [18]; during the filter step we perform an indexed spa-
tial join operation on the polygon MBRs using the indexes
constructed in the previous step; finally during the refine
step we calculate the Jaccard Similarity [29]. Here, the re-
finement operator includes both geometry based refinement
operation for checking polygon intersection and the mea-
surement of intersecting area.
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Figure 2: Spatial join query cost breakdown on CPU

Figure 2 shows the cost of each query component. Clearly,
the cost of computation component (refine) is much higher
than other query components, and becomes the main per-
formance bottleneck.

2.2 Spatial Queries on GPUs
Graphics processing units (GPUs) have been successfully

utilized in many applications that require high performance
computation. Mainstream GPUs come with hundreds of
cores and can execute thousands of threads in parallel. Com-
pared to the multi-core computer systems (dozens of cores),
GPUs can scale to a large number of threads in a cost effec-
tive manner. Therefore, GPUs have the great potential to
improve the performance of spatial queries by eliminating
the computation bottleneck.

Most spatial algorithms are designed for executing on CPU,
and the branch intensive nature of CPU based algorithms re-
quire them to be redesigned for running efficiently on GPUs.
PixelBox [29] is an algorithm that specifically designed for
accelerating cross-matching queries on the GPU. It first trans-
forms the vector based geometry representation into raster
representation using a pixelization method. The pixelization
method reduces the geometry calculation problem into sim-
ple pixel position checking problem, which is well suited for
executing on GPUs. Since testing the position of one pixel
is independent of another, the computation can be paral-
lelized by having multiple threads processing the pixels in
parallel. Since the positions of different pixels are computed
against the same pair of polygons, the operations performed
by different threads follow the SIMD fashion. The detailed
description of the algorithm and related discussions can be
found on the original paper.
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Figure 3: Spatial join query cost breakdown on GPU

Figure 3 shows the query performance breakdown of Pixle-
Box on the same data we used for Figure 2. As the fig-
ure shows, PixelBox achieves almost an order of magnitude
speedup compared to the CPU implementation, and signif-
icantly reduces the cost of computation. Note that here we
perform parse and refinement steps on GPU, and the query
cost includes the time to ship the intermediate data back
and forth between host memory and device memory.

3. ARCHITECTURE AND IMPLEMENTA-
TION OF HAGGIS

Haggis is an extension of Hadoop-GIS that supports the
use of GPUs. Haggis utilizes MapReduce for multi-node
query parallelization, and accelerates queries using GPU
within a single node.

3.1 Architectural Details
Recently, several MapReduce based spatial query systems

[7, 13] have emerged to support scalable spatial query pro-
cessing on large datasets. While these systems vary in im-
plementation details and at the query language layer, they
are conceptually similar. Figure 4 shows the architecture
of Haggis which uses Hadoop-GIS [7] under the hood. As
the figure shows, data is spatially partitioned and staged
to HDFS; spatial queries are expressed as a set of opera-
tors that can be translated to MapReduce tasks during the
runtime. Tasks run on the partitioned input for parallel
query processing. Queries are implicitly parallelized through
MapReduce, and a tile (aka spatial partition) is the paral-
lelization unit that a Mapper/Reducer can process indepen-
dently. Within a Mapper/Reducer task, spatial operations
such as index building and processing are performed with a
high performance spatial query engine – RESQUE. Hadoop-
GIS is designed to be extensible. Within a Mapper/Reducer
task, Hadoop-GIS relies on RESQUE for spatial processing.
Therefore, the MapReduce parallelization is decoupled from
the actual spatial query operations, and we can easily extend
the query engine to add new features.

In Haggis, the RESQUE engine is extended with GPU
based spatial query operators. During the query processing
phase, the RESQUE engine can arbitrarily choose CPU or
GPU for processing the given partition, and the process is
transparent to the user. Query optimizer is responsible for
selecting the device(CPU/GPU) to run the query, and such
decision depends on a number of factors such as potential
speedup gain, and data movement cost. One major advan-
tage of Haggis is flexibility. In a computer system equipped
with GPUs, Haggis can use the extra computation power to

Figure 4: System Architecture

increase the query performance. If such resource is not avail-
able, Haggis still functions by relying on the CPU engine for
query processing.

3.2 Task Assignment
One critical issue for GPU based parallelization is task

assignment – which device to choose processing a given in-
put. As Haggis uses MapReduce based parallelization at the
higher level, tasks arrive in the form of data partitions along
with spatial query operation to be performed on the data.
For each partition, the query optimizer has to choose a de-
vice to process this partition, and assign a tag. Most often,
the potential speedup gain is used to make such decision,
and tasks with larger speedup are scheduled to run on the
GPU. If tasks with small speedup are scheduled for running
on the GPU, we may achieve little performance benefit and
loose the opportunity for using the device for more appro-
priate tasks.

In Haggis, we use a predictive modeling approach for mak-
ing such decision. Similar to the speculative execution model
in Hadoop, we sample certain amounts of data (10% in our
experiment) for performance profiling. In this phase, we pro-
cess the sampled data on both GPU and CPU, and collect
performance statistics and dataset characteristics. We use a
polynomial line fitting algorithm to derive the performance
model on the sampled dataset using the collected statistics
as the input to the model. Then for upcoming tasks, we use
this model to estimate the potential speedup factor. If the
speedup factor is higher than a threshold, we assign the task
to the GPU engine, otherwise to the CPU engine. Haggis
uses following features as predictors: number of objects con-
tained in a partition, number of total polygon vertexes. The
outcome is the task run-time.

3.3 Effects of Task Granularity
To process a task on the GPU device, data needs to be

shipped to the device memory. Such data movement incurs
certain I/O cost. Although the memory bandwidth between
GPU and CPU is much higher compared to the bandwidth
between main memory and the disk, such data movement
should be minimized to achieve optimal system performance.
Therefore, Haggis needs to adjust the partition granularity
to fully utilize system resources. While larger partitioning
is ideal for achieving higher speedup on GPU, it may cause
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data skew. At the same time, a very fine granular parti-
tioning generates large number small tasks that increase the
data movement overhead between the CPU and GPU.

4. EXPERIMENTS

4.1 Experimental Setup
Hadoop-GIS: We use a cluster with 7 nodes and 112 cores.
Each of these 7 nodes comes with 16 cores (AMD 6172 at
2.1GHz), 2.7TB hard drive at 7200rpm, 128GB memory, and
OS is CentOS 5.6 (64 bit). Nodes are connected with a 1Gb
network. Our Hadoop installtion is Cloudera Hadoop 2.0.0-
cdh4.0.0, and most of the configuration parameters are set to
their default values. The system is configured to run a max-
imum of 16 map or reduce tasks on each node. Datasets are
uploaded to the HDFS and the replication factor chosen is 3
on each data node. Each node is equipped with a NVIDIA
Tesla M2070 [2].

We use a pathology imaging dataset coming from an image
analysis study. In this dataset, spatial objects are derived
algorithmically by segmenting boundaries of micro-anatomic
objects such as nuclei and tumor regions. Spatial boundaries
are validated, normalized, and represented in WKT format.
As a result the dataset contains roughly 16.5 million objects.
For benchmarking, we use the spatial cross matching query
described in [29, 7].

4.2 Effects of CPU for co-processing
In the first set of experiments we study the impact of the

number of CPUs on the query performance. Specifically,
rather than using all the available CPU cores, the Haggis
scheduler only utilizes a given number of CPUs for co-query
processing. Ideally, if there are extra computation resources,
the system should utilize such resources and try to improve
the query performance. However, due to scheduling issues,
such objective is hard to achieve.
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Figure 5: Single CPU for co-processing

Figures 5 and 6 show the performance of spatial join query.
The horizontal axis represents MapReduce level paralleliza-
tion and consequently the number of reducers instantiated
for query processing job. The vertical axis represents the
query runtime. In Figure 5 only single CPU core is used for
query co-processing, whereas in Figure 6, 8 CPU cores are

used for such purpose. We can learn three information from
the figures. First, as Figure 5 shows, GPU can be helpful
for improving query performance, and we can see that the
GPU accelerated system outperforms the CPU only system.
However, the speedup gain in not very high. We were ex-
pecting to see same speedup factor as we show earlier in
Section 2. While this can be attributed in part to the data
skew, data transfer overhead, and the disk based persistence
in MapReduce, the result seems to be less than satisfactory.
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Figure 6: Eight CPUs for co-processing

Second, as Figure 6 shows, with sufficient number of CPU
cores for query processing, the performance gain achieved
by adding GPU seems to be trivial. We are planning to
investigate why this is the case.

4.3 Effects of MR Parallelization
Next, we study how the number of available reducer nodes

effects query performance. Specifically, for a fixed cluster
capacity, we change the number of CPU cores available for
co-processing and measure the query performance. Figures 7
and 8 show the performance of spatial join query on different
cluster settings. The horizontal axis represents the number
of available cores available for query co-processing, and the
vertical axis represents the query runtime.

As the figures show, the query performance can be im-
proved significantly by using a larger number of parallel
MapReduce nodes. For example, with a single CPU core for
co-processing, the query time is reduced from 1211 to 424
seconds. This also illustrates the advantage of such hybrid
system which can benefit from the scalability of MapReduce.
With the help of GPUs, this number is further reduced to
309 seconds. However, for a fixed cluster setting, as the
number of CPU cores increases, the advantage of GPU start
to fade away.

5. RELATED WORK
In [11], an approach is proposed on bulk-construction of

R-Trees through MapReduce. In [32], a spatial join method
on MapReduce is proposed for skewed spatial data, using an
in-memory based strip plane sweeping algorithm. It uses a
duplication avoidance technique which could be difficult to
generalize for different query types. Hadoop-GIS takes a hy-
brid approach on combining partitioning with indexes and
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Figure 7: Two node cluster
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Figure 8: Six node cluster

generalizes the approach to support multiple query types.
Besides, our approach is not limited to memory size. Veg-
aGiStore [33] tries to provide a Quadtree based global parti-
tioning and indexing, and a spatial object placement struc-
tures through Hibert-ordering with local index header and
real data. The global index links to HDFS blocks where the
structures are stored. Work in [3] takes a fixed grid par-
titioning based approach and uses sweep line algorithm for
processing distributed joins on MapReduce. The work in
[14] presents an approach for multi-way spatial join for rect-
angle based objects, with a focus on minimizing communica-
tion cost. A MapReduce based Voronoi diagram generation
algorithm is presented in [8]. In our work [6], we present re-
sults on supporting multi-way spatial join queries and near-
est neighbor queries for pathology image based applications.
Previously, we proposed Pixelbox [29] for accelerating cross-
comparison queries for pathology image analysis. In [22, 30,
31], authors discuss a GPU accelerated approach for spa-
tial query processing. However, none of those approaches
are concerned with an integrated approach which combines
both MapReduce and GPU.

There are several recent efforts on task scheduling for hy-

brid machines [17, 19, 24, 26, 9, 27, 15, 28]. Most of the
previous works deal with task mapping for applications in
which operations attain similar speedups when executed on
a GPU vs a CPU. On the other hand, we are exploiting
performance variability to better use heterogeneous proces-
sors.

6. CONCLUSION
Big spatial data from spatial applications shares many

similar requirements for high performance and scalability
with enterprise data, but has its own unique characteristics
– spatial data are multi-dimensional and spatial query pro-
cessing comes with high computational complexity. In this
paper, we present Haggis – a hybrid system that combines
the benefit of scalable and cost-effective data processing
with MapReduce, and the benefit of efficient spatial query
processing with GPU. Our preliminary experimental results
demonstrate that Haggis provides a scalable and effective
solution for analytical spatial queries over large scale spatial
datasets. However, there are many challenges such as ef-
fective task scheduling and assignment, and mitigating sub-
optimal partition granularity for achieving better speedup.
Our ongoing work includes support of 3D spatial data which
requires even more intensive computation compared to 2D
cases.
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