
A Spatial Join Algorithm Based on a Non-uniform Grid
Technique over GPGPU

(Extended Abstract)

Danial Aghajarian and Sushil K. Prasad
Computer Science Department

Georgia State University
daghajarian@cs.gsu.edu, sprasad@gsu.edu

ABSTRACT
Grid-based techniques are well-suited for spatial join algo-

rithms over General Purpose Graphic Processing Unit (GPGPU)
architectures because of their non-hierarchical structure. How-
ever, these techniques are well-established years before the
existence of GPU computing. As a result, they do not fully
take advantage of many-core architectures. Last year, we
had introduced a spatial join GPU system based on discard-
ing even those cross-layer pairs of polygons whose Minimum
Bounding Rectangles (MBRs) intersect but their rectangu-
lar intersection does not contain edges from both layers.
These MBR intersections are called Common MBRs. In
this extended abstract, we briefly introduce CMF-Grid : a
non-uniform GPU-based grid technique over such Common
MBRs, that can be used in polygonal spatial join operations
such as overlay, edge-intersection etc. to significantly reduce
their computationally-extensive refinement phase workload.
Based on our experimental results on real datasets, CMF-
Grid can cut down the refinement phase workload by more
than 30, 000 times that of all-to-all algorithms and it im-
proves upon its predecessor, CMF filter, by 700 times. Our
upgraded spatial join system with ST intersect predicate
is able to process more than 600, 000 polygons with more
than 2 billions edges on a single GPU in less than a second
end-to-end processing time that is 225% time improvement
compared to GCMF, the state of the art GPU-based system.
The system also achieves up to 200-fold end-to-end speedup
versus the best optimized sequential routines of GEOS C++
library as well as PostgreSQL spatial database with Post-
GIS.
∗

1 Introduction
The ever increasing volume of spatial data from various com-
munities representing geographic location of features and

∗This research is partially supported by NSF grant
#1205650.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL’17 November 7–10, 2017, Los Angeles Area, CA, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5490-5/17/11.

DOI: https://doi.org/10.1145/3139958.3140056

boundaries, medical images or traffic on one hand and the
crucial need of realtime processing of these datasets in order
to extract helpful information on the other hand makes it
necessary to exploit High Performance Computing (HPC)
in Geographic Information System (GIS) domains [1]. Cur-
rently, the primitive-like overlay operation over two layers
of spatial object, including less than 700,000 polygons us-
ing state of the art ArcGIS software takes more than 13
minutes on a single node [2]. To address these challenges,
researchers have designed several distributed architectures
to make HPC computing available for geospatial processing
including cloud-based systems [3, 4], Message Passing In-
terface (MPI) systems [5, 6], and map-reduce systems [7].
Most of these systems make use of powerful and expensive
computing clusters to break down the computations over
several distributed nodes. Some of these applications han-
dle tremendous volume of spatial data which requires us-
ing many nodes. Even with such parallelism, employing
only CPUs in modern heterogeneous architectures, typically
equipped also with GPU, one to two orders of speedup re-
mains unharnessed [8]. One effective way of reducing the
number of nodes while keeping up with the required comput-
ing power is to accelerate the computations in Graphic Pro-
cessing Units (GPU). Effective employment of CPU-GPU
pair is critical for real-time spatial processing.

Generally, spatial join algorithms over two layers of polyg-
onal (vector) datasets follow a two-phase paradigm [9]:

• Filtering phase: reduces all possible pairs of cross-layer
spatial objects to a smaller set of potentially inter-
secting candidate pairs based on some computationally
light algorithms such as Minimum Bounding Rectangle
(MBR) overlap test.

• Refinement phase: removes any results produced dur-
ing the filtering phase that do not satisfy the join predi-
cate, such as ST intersect, overlap, union, overlay, and
etc.

The refinement phase is significantly time consuming as
it typically involves O(n2) algorithms. Our GCMF algo-
rithm recently reduced the refinement phase processing time
for edge-intersection test down to about 50% of the total
time [10]. Older analysis of join operations on CPU show
that refinement phase can take up to five times more than
the rest of the operations including filtering and parsing

datasets [11]. In this work, we introduce CMF-Grid, a non-
uniform grid-based filtering technique that is specifically de-
signed based on GPU architecture to further reduce refine-
ment processing time. It reduces the refinement phase work-
load more than 30, 000 times compared to the naive all-to-all
algorithm. It also improves over its predecessor, CMF fil-
ter, by reducing workload by 700 times [10]. Furthermore, to
demonstrate the efficiency of CMF-Grid technique, we refine
a GPU-based system for spatial join based on ST intersect
operation. The experimental results show that by applying
CMF-Grid, this system is 225% faster than GCMF [10],
which is the state of art. The proposed system can pro-
cess end-to-end spatial join over more than 600, 000 poly-
gons with over 2 billions edges in less than a second on a
single NVIDIA P100 GPU. Finally, we compare the refine-
ment workload of our proposed grid technique with uniform
grid to show efficiency of CMF-Grid.

The remainder of this extended abstract is organized as
follows. In Section 2, we introduce the CMF-Grid technique
and in Section 3, we briefly discuss a spatial join system
with ST intersect operation based on CMF-Grid to study
the efficiency of this technique. Experimental results are
presented in Section 4. We conclude and point out our future
work plan in Section 5.

2 CMF-Grid
In this section, we briefly introduce the idea of proposed grid
technique.

2.1 Problem Definition
CMF-Grid can be formulated as an adaptive grid method as
follows. For every pair of polygons i, (Pi1 , Pi2) in set C, set
of MBR overlapping polygon pairs, we want to break down
Common MBR of that pair, CMBRi, into Ngi equal-size
cells (grid-cell) and identify all the edges of Pi1 and Pi2 that
lie in each cell. It is worth mentioning that each edge can
belong to zero to several grid-cells. We want to partition
each Common MBR in a way that the total workload for
in-cell all-to-all refinement phase becomes small enough to
minimize end-to-end processing time.

2.2 General Idea
Uniform grid algorithms are not among the best techniques
for datasets with unevenly distributed spatial objects to
achieve the highest performance. They perform well only
if objects are distributed uniformly over the universe where
by applying a uniform grid we can have equal size grid-cells
with almost balanced workload per cell for further refine-
ment phase in-cell all-to-all processing. Furthermore, classic
grid-based techniques are not designed for many-core paral-
lel architectures.

To address these issues, we introduce CMF-Grid, a non-
uniform grid-based filter applicable to Common MBR area
of potentially overlapping pairs. Figure 1 illustrates the dif-
ference between traditional grid techniques and our adap-
tive approach. CMF-Grid can be distinguished from all
the other grid-based techniques in the geospatial processing
literature by following two features:

1. In CMF-Grid, grid-cells do not necessarily cover the
whole universe (Figure 1-b).

2. In CMF-Grid, grid-cells may overlap with each other
(in cases that Common MBRs of overlapping pairs

overlap). Later on, we see that such overlaps are in-
frequent and therefore do not impact performance.

CMF-Grid that is carefully designed to be an embarrass-
ingly parallel algorithm to exploit key aspects of many-core
parallel architectures can be formulated as an adaptive grid
method as follows. As mentioned earlier, the main goal
of partitioning the Common MBRs is to optimize the to-
tal workload for in-cell all-to-all refinement phase. CMF-
Griddoes that by determining each CMBR cell-sizes inde-
pendently based on following local information:

• Number of edges partially lying in Common MBR from
each polygon.

• Average length of edges in each polygon inside Com-
mon MBR.

• Width and height of Common MBR.

It can be proved that for a given pair of MBR-overlapping
polygons, the average in-cell all-to-all workload in this grid
technique is a quadratic function of their Common MBR
cell-size. As a result, by changing cell-size we can change the
total workload. Furthermore, It can be shown that finer grid
cells do not always lead to smaller processing time. In fact,
there is a optimal cell size that minimize processing time
and it larger than the cell size that minimize the workload.

Figure 1: (a) uniform grid technique, and (b) CMF-
Grid : In CMF-Grid, grid-cells are not of the same
size and may not cover the whole universe.

3 ST_intersect Spatial Join
In this section, we demonstrate the efficiency of CMF-Grid
by applying this filter to upgrade our previous GPU-based

spatial join system referred to as GCMF [10]. To the best
of our knowledge, GCMF is the state of art for ST intersect
join operation over GPU. For any given pair of polygons
(P1, P2), ST intersect is true if and only if 1) one polygon
lies inside another one, or 2) there exists a pair of edges
EP1(i) and EP2(j) such that they intersect, or overlap. In
other words, ST intersect is true if and only if two polygons
share any space.

In the following subsections, we explain the system archi-
tecture and point out the changes we needed to apply in
GCMF to make it functional with CMF-Grid.

GCMF introduced CMF filter to reduce edge-intersection
refinement phase workload by filtering out those edges that
lie outside of their Common MBR for pairs of polygons [10].

Building on our previous work in GCMF, the improved
system has two upgraded components compared to GCMF
as follows:

• We replace CMF filter with CMF-Grid technique with
optimized grid cell parameters.

• A new grid-based edge-intersection test component sub-
stitutes all-to-all Edge-intersection test used in GCMF.

Similar to its predecessor (CMF [10]), CMF-Grid clas-
sifies MBR-overlapping polygon pairs into three groups as
follows:

1. Within candidate set : set of all the MBR-overlapping
polygon pairs (i1, i2) such that MBRi1∩i2 is either
equal to MBRi1 or MBRi2 .

2. Intersecting-edge candidate set : set of all MBR-overlapping
polygon pairs (i1, i2) such that (i1, i2) is not in (1) and
also there exists a non-empty cell in CMBRi.

3. Disjoint set : Remaining MBR-overlapping polygon pairs
that are neither in (1) nor (2).

Applying this grid technique, grid-based edge-intersection
algorithm can be developed in a load-balanced way with less
workload compared to its predecessor.

4 Results
We use two real datasets (Urban, Water) each including
two sets of polygonal objects from [10] for evaluation of our
algorithms. Urban dataset is a small dataset with about
18, 000 polygons. Water dataset, however, is a large dataset
with more than 600, 000 polygons and 2 billion edges.

We carried out all the GPU experiments on Bridges cluster
located at Pittsburgh Supercomputing Center (PSC), one
of the XSEDE (Extreme Science and Engineering Discovery
Environment) resources supported by the National Science
Foundation (NSF) cyberinfrastructure program. We used a
Regular Shared Memory node (RSM-GPU) with 128 GB of
RAM memory equipped with two NVIDIA Tesla P100, the
latest GPUs from NVIDIA with 16 GB of the main mem-
ory. For spatial join use case, we used results of PostgreSQL
version 9.4 with PostGIS version 2.2 and GEOS library ver-
sion 3.4.2 presented in [10] conducted on a 2.6 GHz Intel
Xeon E5-2660v3 processor, as a sequential baseline. How-
ever for GPU baseline, we ran GCMF experiments on the
P100 GPU to make a fair comparison.

4.1 CMF vs. CMF-grid
To compare CMF-Grid with CMF in terms of workload
reduction, we define edge-reduction factor in CMF-Grid for
a MBR-overlapping pair similar to the one in [10] for CMF
as:

REgrid−CMF =

∑
i:(i1,i2)∈C |Ei1 |+ |Ei2 |∑

i:(i1,i2)∈C
∑Ngi

k=1 |Êk
i1
|+ |Êk

i2
|

(1)

where Ngi is the number of grid-cells in CMBRi and

|Êk
i1 | is number of edges of polygon i1 partially lying in-

side cell k. For Ngi = 1 (one grid-cell covering the whole
CMBRi) CMF-Grid and CMF are technically equivalent.
Table 1 shows timing and workload of edge-intersection test
for naive all-to-all, CMF, and CMF-Grid algorithms for Wa-
ter dataset. Both CMF and CMF-Grid eliminate almost
two-third of pairs. CMF edge reduction factor is more than
43 times while CMF-Grid edge reduction factor is about 13
(third row in Table 1). Moreover, Total number of edges in cells

Total number of edges in CMBR
is about 3.17 that implies each edge passes through almost
three grid-cells on average (edge duplication). On the other
hand, number of active edge-cells in CMF-Grid is less than
that of edges in CMF by a factor of 3. As a result, to-
tal workload of edge-intersection test after applying CMF-
Grid is more than 30, 000 times smaller than all-to-all and
also more than 730 times smaller than CMF filter. This
tremendous decrease in workload leads to more than 10-fold
speedup of grid-based edge-intersection test versus the one
used in GCMF that brings down Edge−intersection time

Total time
ratio

from 58% in GCMF to 12% in new system. It also achieves
more than 800-fold speedup versus sequential all-to-all test.

Finally, Table 2 shows running time for two sequential
PostGIS and GEOS optimized library systems reported in [10].
We also provide running time for our new system based on
CMF-Grid and the current state of the art, GCMF. New
end-to-end running time of GCMF is more than 4 times
faster than its original results reported in [10] that is be-
cause of P100 GPU used in this experiment. The end-to-end
running time for our new system with CMF-Grid shows a
significantly impressive improvement of 225% compared to
GCMF. It also shows up to 200-fold speedup gain compared
to the best sequential system.

Table 1: Refinement workload reduction of Water
dataset for all-to-all, CMF and CMF-Grid.

All-to-all CMF [10] CMF-grid
Time (ms) 120,751 981 89
Pairs ∈ I 566,656 198,142 198,125
Edges(all) 2,002,910,863 46,421,188 147,002,513

Edges(active) 2,002,910,863 46,421,188 15,043,183
Workload 535, 108, 085, 968 12,794,606,592 17,370,352

4.2 CMF-grid vs. uniform grid
Finally, figure 2 shows the actual total refinement workloads
of CMF-Grid and uniform grid for a wide range of grid-cell
sizes (coarse to fine) for Urban dataset. The refinement
workload in the case of CMF-Grid seems to be converging
to the minimum value much faster than uniform grid. In
other word, workload of uniform grid for the coarser grid-
cells (smaller number of grid-cells) is much larger than CMF-
Grid. However, as the number of grid-cells increases (finer
grid) it converges toward CMF-Grid. Given that for a larger

Table 2: End-to-end running time of spatial join with ST intersect operation for four different systems.

Dataset
Running Time (ms) CMF-grid Speedup

Sequential Parallel
Best Sequential Parallel (GCMF

CMF−grid
)

PostGIS GEOS GCMF [10] CMF-grid
Urban 3,120 5,770 52 31 101 (PostGIS) 1.68
Water 232,122 148,040 1,663 739 200 (GEOS) 2.25

number of grid-cells more time is needed to process the whole
grid and more memory is needed to keep its data structure,
the efficiency of our method is significantly better than that
of uniform grid. In fact, if we want to lower the workload
of uniform grid down to optimal (converged point) we need
to have almost three times more grid-cells (finer cells) than
CMF-Grid.

0 0.5 1 1.5

·108

0.5

1

·106

Total grid-cells

R
efi

n
em

en
t

W
o
rk

lo
a
d Uniform grid

CMF-grid

Figure 2: Workload of CMF-Grid versus uniform
grid for a wide range of grid-cells in Urban dataset.

5 Conclusion
In this extended abstract, we have introduced CMF-Grid, a
new non-uniform grid technique that is designed with con-
sideration of many-core GPU architectures. We also used
this filter to design a system for spatial join with ST intersect
operation as a case study that improved the end-to-end run-
ning time of the current state of the art GPU-based system
(GCMF) by 225%. The system was upgraded in two ways,
CMF-Grid component was able to reduce the edges for re-
finement phase by a factor of 800 compared to GCMF and
a new grid-based edge-intersection algorithm was able to
achieve more than 10-fold speedup compared to the one in
GCMF.

Our future work plan is to scale the system up by exploit-
ing MPI to distribute the workload across nodes making
it possible to process much larger datasets among the dis-
tributed GPU nodes.

6 References
[1] S. K. Prasad, D. Aghajarian, M. McDermott,

D. Shah, M. Mokbel, S. Puri, S. J. Rey, S. Shekhar,
Y. Xe, R. R. Vatsavai, et al., “Parallel processing over
spatial-temporal datasets from geo, bio, climate and
social science communities: A research roadmap,” in
Big Data (BigData Congress), 2017 IEEE
International Congress on, pp. 232–250, IEEE, 2017.

[2] S. Puri and S. K. Prasad, “A parallel algorithm for
clipping polygons with improved bounds and a
distributed overlay processing system using mpi,” in
Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on,
pp. 576–585, IEEE, 2015.

[3] S. You, J. Zhang, and L. Gruenwald, “Large-scale
spatial join query processing in cloud,” in Data
Engineering Workshops (ICDEW), 2015 31st IEEE
International Conference on, pp. 34–41, IEEE, 2015.

[4] S. Ray, B. Simion, A. D. Brown, and R. Johnson, “A
parallel spatial data analysis infrastructure for the
cloud,” in Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pp. 284–293, ACM, 2013.

[5] S. Puri, D. Aghajarian, and S. Prasad, “MPI-GIS :
High Performance Computing and IO for Spatial
Overlay and Join,” The International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC-16), 2016 (Research Poster).

[6] S. Puri and S. K. Prasad, “MPI-GIS: New parallel
overlay algorithm and system prototype,” 2014.

[7] A. Eldawy and M. F. Mokbel, “A demonstration of
spatialhadoop: An efficient mapreduce framework for
spatial data,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1230–1233, 2013.

[8] S. K. Prasad, M. McDermott, X. He, and S. Puri,
“Gpu-based parallel r-tree construction and querying,”
in Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International,
pp. 618–627, IEEE, 2015.

[9] E. H. Jacox and H. Samet, “Spatial join techniques,”
ACM Transactions on Database Systems (TODS),
vol. 32, no. 1, p. 7, 2007.

[10] D. Aghajarian, S. Puri, and S. K. Prasad, “GCMF: An
efficient end-to-end spatial join system over large
polygonal datasets on gpgpu platform,” SIGSPATIAL,
2016.

[11] A. Aji, G. Teodoro, and F. Wang, “Haggis:
Turbocharge a mapreduce based spatial data
warehousing system with gpu engine,” in Proceedings
of the 3rd ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data, pp. 15–20,
ACM, 2014.

