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ABSTRACT
Given two layers of large polygonal datasets, detecting those
pairs of cross-layer polygons which satisfy a join predicate,
such as intersection or contain, is one of the most compu-
tationally intensive primitive operations in the spatial do-
main applications. In this work, we introduce GCMF, an
end-to-end software system, that is able to handle spatial
join (with ST Intersect operation) over non-indexed polyg-
onal datasets with over 3 GB file size comprising more than
600, 000 polygons on a single GPU within less than 8 sec by
applying innovative filter and refinement techniques. GCMF
performs a two-step filtering phase. 1) A sort-based Mini-
mum Bounding Rectangle (MBR) filtering step detects po-
tentially overlapping polygon pairs up to 20 times faster
than the optimized GEOS library routine. 2) A linear time
Common MBR filtering step (based on the overlapping area
of two given MBRs) that not only eliminates two-third of
the candidate polygon pairs but also reduces the number of
edges to be considered in the refinement phase by 40-fold
on an average based on our experimental results with real
datasets. Furthermore, for the refinement phase, GCMF
implements a load-balanced parallel point-in-polygon and
edge-intersection tests over GPU. Our experimental results
with three different real datasets show up to 39-fold end-to-
end speedup versus optimized sequential routines of GEOS
C++ library as well as PostgreSQL spatial database with
PostGIS.

Categories and Subject Descriptors
H.4 [Information systems]: Geographic information sys-
tems; F.2 [Theory of computation]: Shared memory al-
gorithms
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1 Introduction
Spatial data comprising rectangles, polygons, lines, and points
are wide-spread in Geographic Information Systems (GIS).
Because of advanced remote sensing technologies, the vol-
ume of data generated in such applications has tremen-
dously increased over the past decade. For instance, Light
Detection and Ranging (LiDAR) systems produced 40 PB
of data in 2014 but domain scientists were able to handle
only 30PB of data [4]. Researchers have predicted LiDAR
technology will generate up to 1, 200 PB of data by 2020,
while GIS workforce has the capacity to process only 50 PB.
This demonstrates ever-increasing demand for High Perfor-
mance Computing (HPC) in GIS domains. In particular,
GPUs are very popular among the HPC technologies as
they are widely available at low prices yet with powerful fea-
tures. For example, GeForce GTX 1080, the latest NVIDIA
GPU released in May 2016, is driven by the new NVIDIA
PascalTMarchitecture which provides 2560 Cuda Cores op-
erating at 1607 MHz base clock and 8 GB of the main
memory with 320 GB/sec bandwidth that makes it feasible
to handle larger data in a real time manner.

Spatial join is one of the most computationally intensive
operations in spatial computing. For instance, spatial join of
a polyline table with 73M records representing the contigu-
ous USA with itself takes roughly 20 hours to complete on
an Amazon EC2 instance [14]. Therefore, harnessing paral-
lel processing capabilities of modern hardware platforms to
perform join operation over big spatial datasets is essential.
In general, spatial join can be defined as follows: given two
spatial datasets R and S and a spatial join predicate ./ (e.g.,
overlap, contain, intersect) as input, spatial join returns the
set of all pairs (r, s) where r ∈ R, s ∈ S, and ./ is true for
(r, s) [6]. A typical application of a spatial join is “Find all
pairs of rivers and cities that intersect.” The focus of this
paper is on polygonal data with ST Intersect operation in
which for a given pair of polygons, it returns true if and only
if polygons share any portion of space [12].

Generally, spatial join algorithms over polygonal data fol-
low a two-phase paradigm [6]:

• Filtering phase: reduces all the possible cross-layer
polygon pairs to a set of potentially intersecting can-
didate pairs based on minimum bounding rectangle
overlap-test.

• Refinement phase: removes any results produced dur-
ing the filtering phase that do not satisfy the join con-
dition.



The refinement phase is significantly time-consuming. For
instance, an analysis of join operation on CPU over more
than 10,000 spatial objects in [1] shows that refinement phase
takes five times more than the rest of the operations includ-
ing filtering and parsing datasets. While this study demon-
strates the significance of refinement step, in the current
literature, most GPU-related works have only addressed the
filtering phase algorithms. In this work, we plan to bridge
this gap by introducing GCMF, a GPU-based spatial join
system including both filtering and refinement steps. Our
work can be distinguished in two ways: 1) To the best of our
knowledge, there is no such system to process end-to-end
polygonal intersection-based join over GPU, and, 2) com-
parable systems that proposed other spatial join predicates
such as k-Nearest Neighbor [8] cannot handle the amount of
data that we are able to process on a single GPU and they
have reported less speedups.

In summary, our key contributions in this work are:

• GCMF : An end-to-end spatial join system built on a
single GPU to generate cross-layer polygon pairs from
two large datasets that satisfy spatial join condition
in near real-time manner. Based on our experimental
results, GCMF was able to handle real datasets as
large as (not limited to) 3GB files up to 39 times faster
than an optimized GEOS library within a few seconds.

• A sort-based MBR filtering algorithm with a suitable
GPU-specific data structure that yields up to 20-fold
speedup compared to optimized GEOS library. Proof
of correctness of this algorithm is also provided.

• Common MBR Filter (CMF) based on the MBR re-
sulting from the intersection of MBRP1 and MBRP2

that makes refinement phase 28 times faster than the
same implementation without CMF by 1) reducing the
number of candidate polygon pairs by up to 66% and
2) making the polygon pairs 40-fold smaller in size by
removing many of the non-intersecting edges. We pro-
vide proofs and performance analysis for this filter.

• A load-balanced implementation of parallel point-in-
polygon test that is up to 9 times faster compared to
the naive implementation over GPU. It also achieves
30-fold speedup compared to sequential implementa-
tion over CPU.

The remainder of this paper is organized as follows. In
the next section, we summarize the current work in the lit-
erature with a focus on performance of algorithms. Then,
in Section 3, we introduce GCMF system overview, its com-
ponents, algorithms and theoretical analysis. Experimental
results are presented in Section 4. Finally, we provide con-
clusions and point out our future work plan.

2 Literature Review
Exploiting GPU to do spatial join operations has been ex-
plored in the HPC literature [20, 21, 13, 9, 23]. In this
section, we have summarized related work focusing on the
design and implementation of various types of join opera-
tions. First, we present a brief survey on sequential and
multi-core algorithms. Then, we briefly summarize the work
around GPU algorithms for spatial join.

Sequential and multi-core spatial joins algorithms:
A sequential plane-sweep MBR filtering algorithm has been
explained in [2]. In this paper, the basic idea is to sort
lower boundaries of rectangles for plane sweeping in a re-
cursive manner. An extensive performance evaluation on
synthetic datasets with various ranges of properties includ-
ing tall-shape or wide-shape rectangles is carried out in this
paper. The results shows that the algorithm efficiency sig-
nificantly depends on the width to height ratio of the rect-
angles. Some methods for dealing with tall/wide rectan-
gles is described in [5]. GIPSY [11] is a novel approach for
spatial join of two datasets with contrasting density to ad-
dress space oriented coarse-grained partitioning challenges.
GIPSY partitions the dense dataset using a method similar
to STR [7] and then joins it with the non-indexed sparse
dataset. Their extensive evaluation results using synthetic
and real datasets yields up to 18-fold speedup. The main
limitation of this algorithm is the assumption that one of
the datasets is sparse.

A bottom-up spatial join approach based on CPU paral-
lelism has been proposed in [26]. This algorithm does not
rely on pre-existing spatial indices. The MBR join over Se-
quoia2000 dataset [19] (58411 by 20,974 size) takes more
than 7 seconds on a platform with 40 processors.

GPU-based spatial joins algorithms: A naive par-
allel implementation of spatial join using R-tree has been
described in [20]. This top-down query search method runs
about 3 times faster on GPU than CPU on average and
considering the CPU-GPU data transfer time, the perfor-
mance is even worse than CPU implementation. Parallel
spatial join using R-tree has been implemented in [21]. The
GPU algorithm runs 8 times faster than multi core CPU
implementation. A simple parallel r-tree query implemen-
tation on GPU is stated in [9] which runs 20 times faster
than CPU. Another R-tree-based spatial join on GPU with
less than 4-fold speedup has been reported in [20]. In [18],
six spatial join queries has been implemented over GPU and
they have achieved 6-10 fold speedup including transfer time
from CPU to GPU. One of the fastest R-tree implementa-
tion and querying on GPU has been recently described by
our group in [13]. We have proposed five algorithms for
batch MBR querying and the best performance comes out of
the modified-DFS algorithm, which initiates all-to-all search
starting from the parents of the R-tree leaves. Speedup gain
for querying algorithms is in the range 76-fold to 153-fold
which is much higher than previous algorithms in the lit-
erature. However, a key limitation is the small datasets it
currently handles because of O(n2) space complexity.

Spatial Join Processing Systems:

CudaGIS [23] exhibits 20-40 fold speedup versus sequen-
tial CPU implementation for spatial indexing and some spa-
tial join operations. This group has also exploited the uni-
form grid-based approach to create various indexing data
structures such as R-tree, quad-tree, CSPT-P-tree and BMMQ-
tree data structures. [25]. The main idea is to assign rectan-
gles to grid cells and compute the operations locally in each
grid cell. The speedup results show up to 20-fold improve-
ment over CPU implementation for end-to-end system. Al-
though the results show a good speedup over various spatial
operations, this library has some limitations. As opposed to
spatial join described in [24] which is ST Within operation
on a point layer and polygon layer, our work is ST Intersect
on two polygon layers. Also, most of their experiments are



done over the datasets with an assumption of relatively uni-
form load per thread due to small size polygons.

An Impala-based in-memory Spatial Processing system
has been designed in [22]. Most of their library has been
implemented on top of Thrust parallel library in Cuda SDK.
Single node performance test of their framework demon-
strates speedup less than 2 for two different datasets.

3 Algorithms
In this section, we present the problem definition and nota-
tions, datasets employed, the overall system design, and the
filtering and refinement algorithms.

3.1 Problem Definition
Given a polygon P , MBRP = (xP,0, yP,0, xP,1, yP,1) is the
minimum bounding rectangle of P that can be described
by its bottom-left coordinate (xP,0, yP,0) and top-right co-
ordinate (xP,1, yP,1). We also use xP (or yP ) to refer to
x-coordinates of MBRP regardless of being left or right co-
ordinate (xP ∈ {xP,0, xP,1}). For two overlapping bound-
ing rectangles, MBRP1 and MBRP2, we define Common
MBR, MBRP1∩P2, as the minimum bounding rectangle of
their overlapping area. Finally, for any polygon P , EP is
the list of edges and EP (i) denotes i-th edge.

As stated before, spatial join operation can be defined over
two spatial objects and a predicate. In this paper, we define
spatial join as follows: for any given pair of polygons, P1 and
P2, P1 ./ P2 returns true, if and only if either there exists
a pair of edges EP1(i) and EP2(j) such that they intersect,
or if overlap or one of the polygons lies inside the other one.

3.2 Datasets
We have used two real polygonal dataset pairs (Urban, Wa-
ter) from http://www.naturalearthdata.com and http://
resources.arcgis.com from GIS domain with various sizes and
characteristics (Urban and Water). The third dataset (Tele-
com) comes from telecommunication domain. The details of
the datasets are provided in Table 1. All the datasets are
available online at the project site at http://grid.cs.gsu.edu/
˜daghajarian1/SpatialJoin.html in both shapefile and text
formats.

Table 1: Three real datasets used in our experi-
ments.

Label Dataset Polygons Size

Urban
ne 10m admin states 11,878 46MB
ne 10m urban areas 4,646 41MB

Telecom
GA telecom base 101,860 171MB

GA telecom overlay 128,683 240MB

Water
US block boundaries 219,831 2.175GB

US water bodies 463,591 921MB

3.3 System Design Overview
ST Intersect predicate requires both edge-intersection and
point-in-polygon tests. Figure 1 illustrates a typical work-
flow of the spatial join algorithm which has been used in
the literature. R-trees are used to index polygons and then
R-tree query is used to detect potentially overlapping poly-
gons. Finally, point-in-polygon and edge-intersection tests
are applied in the refinement phase. Overall running time

of the traditional system is heavily dominated by the refine-
ment phase which we try to address by introducing our new
system design.

Figure 1: Typical spatial join processing pipeline

Edge-intersection test is more compute-intensive than point-
in-polygon test. We take advantage of this fact in our sys-
tem design workflow by adding one more filtering phase
based on Common MBR. Figure 2 shows the overview of the
GCMF system. GCMF has two subsystems. The first sub-
system includes two filtering components. The first is Sort-
based MBR Filter (SMF ) which reduces set of all cross-layer
polygon pairs into the set of potentially intersecting poly-
gon pairs (C) by overlap-test over their minimum bounding
rectangles. The second component is Common MBR Fil-
ter (CMF ) that applies intersection test to edges of each
pair in C and their common MBR to classify polygon pairs
into following three groups: 1) Intersecting-Edge candidate
set (I), 2) within candidate set (W) and 3) disjoint pairs
which can be discarded. We explain these two filters in
more details in the following subsections. The refinement
subsystem comprises two components: point-in-polygon test
(PnP Test) and edge-intersection test (EI Test). The first
component takes W as input and performs the point-in-
polygon test. If a pair passes the test successfully, it goes
to output directly, otherwise it is sent to edge-intersection
test for further processing. As shown in the Figure 2, the
input of the EI Test comes from I as well as those pairs
from W which failed point-in-polygon test. Finally, EI Test
adds a pair to output if it can detect at least one cross-layer
edge-intersection/overlap in that pair.

Figure 2: GCMF system design overview

3.4 Sort-based MBR Filtering
Tree-based data structures such as R-trees and interval trees
have been used in MBR filtering. While these data struc-
tures are perfectly matched to sequential algorithms, they
are not suitable currently for large datasets over GPUs mostly
because of their hierarchical structures and memory usage



in current implementations. To address this issue, we in-
troduce SMF which is a sort-based MBR filter algorithm,
highly suitable for GPUs in particular.

SMF takes MBR sets R and S with |R| = m and |S| = n
as input and generates cross-layer MBR-overlapping pairs
as output set C. If two MBRs overlap then their (interval
defined by) x-coordinates overlap and their y-coordinates
overlap. In essence, this algorithm looks for two interval
overlaps in x and y dimensions. It sorts the x coordinates of
the MBRs from both layers (set X). Then for each MBRi

with x coordinates (xi,0, xi,1), it finds all the MBRj from
the other layer with x-coordinates (xj,0, xj,1) such that
xi,0 ≤ xj,0 ≤ xi,1. Then MBRi is tested against all such
MBRj for overlap in their y coordinates, thus yielding the
output set C. Same can be done by sorting the y coordinates
and then testing in x-dimension. Later, we prove that this
algorithm neither generates a duplicate pair nor misses one.

Algorithm 1 describes the Sort-based MBR Filter suit-
able for GPUs. As mentioned above, X is a vector of x-
coordinates of the MBRs in both layers. CRadixSort is our
customized radix sort function which generates two vectors:

• sortIndex : In order to prevent swapping 64-bytes el-
ements in X over GPU main memory which is not
efficient, CRadixSort prepares sorted indices such that
sortIndex[i] is the index of i-th smallest element in X.

• rankIndex : To have an efficient parallel algorithm, each
MBRi needs to know indices of its left and right co-
ordinates in vector X in O(1) time without searching
through sortIndex. To provide this information, we
introduce rankIndex which keeps track of MBRs in
sortIndex vector. rankIndex[i] is the index of xi at
sortIndex.

The following properties are always held by these two vectors
for any 0 ≤ i ≤ m + n− 1:

rankIndex[ sortIndex[ i ] ] = i

sortIndex[ rankIndex[ i ] ] = i
(1)

To better understand the data structure, Figure 3 provides
an example. Part (b) is X for 4 MBRs presented in part (a).
For any MBRi, xi,0 and xi,1 can be accessed through 2× i
and 2× i+1 indices of X respectively. For instance, the first
two values are left and right x-coordinates of MBR0. Parts
(d) and (e) represent sortIndex and rankIndex, respectively.

Generating rankIndex has two advantages. 1) For a given
MBRi, we can access its sorted indices in O(1). For ex-
ample, position of x3,0 at sortIndex (equal to 1) is the 6th
element of rankIndex. 2) This vector is helpful for balanc-
ing the load. If we want to figure out how many elements
may potentially lie in between an MBR range (an estimation
of load of the block handing that MBR), we can subtract its
corresponding values in the rankIndex vector. The value
gives us an upper bound which also can be used as a rel-
ative measure of number of overlapping MBRs for a given
MBR. For example, MBR3 includes just one element in its
x-interval {x0,0}, while MBR1 has three {x3,0, x0,0, x3,1}.

To implement sort-based MBR filter, we launch a kernel
with m+n (total number of MBRs in both layers) blocks and
each block handles the interval corresponding to one MBR.
By evenly distributing the load among the threads within a
block, we make the implementation load-balanced. In GPU

Blocki, algorithm finds all the elements xj,0 ∈ X which lie
between xi,0 and xi,1 using rankIndex and sortIndex (Line 5
in Algorithm 1). Then if they also intersect in y-coordinate,
the block produces (i, j) pair as output if MBRi is the firs-
layer MBR (Line 8), otherwise, (j, i) is generated (Line 10).

Figure 3: An example of data structure used for
sort-based MBR filter. Part (a) is actual MBRs,
(b) is X set, (c) is sorted X, (d) is sorted indices
of X and (e) is sorted indices of MBRs. For exam-
ple index of 2-th smallest coordinate (which is 22)
can be retrieved from sortIndex[1] = 6. Part (e) is
rankIndex which keeps track of MBRs in sortIndex.
For example, position of (x30 , x3,1) (red MBR)in
sortIndex can be fetched from rankIndex[3 × 2] = 1
and rankIndex[3× 2 + 1] = 3

Lemma 1 proves the correctness of sort-based MBR filter-
ing algorithm.

Lemma 1. SMF: Given two sets of MBRs, R and S, Al-
gorithm 1 will generate all overlapping MBR pairs without
any false positives or duplicates.

Proof. The first part of proof can be derived from the
algorithm by showing that O ⊆ A and A ⊆ O where O
is output of algorithm and A is pairs of overlapping MBRs.
For the second part, lets assume MBR pair (i, j) is generated
twice. Pair (i, j) may be generated by Blocki or Blockj . As
such, one of these two blocks may generate this pair twice or
each of the blocks may generate only one of the duplicated
pairs. First case is impossible as we process each MBR just
once in its corresponding block and no coordinate is dupli-
cated in the data structures. Let us assume both Blocki and
Blockj reports (i, j) as output. Given this, Blocki implies
that xj,0 appears after xi,0 and before xi,1 in X. Blockj also
requires that xi,0 appears between xj,0 and xj,1 in X at the
same time which is impossible. Therefore, each intersecting
pair (i, j) is exactly generated once in the output.

3.4.1 SMF Analysis
For average case analysis, we assume that average height
and width of MBRs are h̄ and w̄ respectively and they are



Algorithm 1 Sort-based MBR filtering algorithm

Input: R and S set of MBRs Output: set C

Building data structure
1: let X = {xi|xi ∈ x-coordinate of R ∪ S}
2: (sortIndex , rankIndex) ← CRadixSort(X)

3: procedure (Filter for R and S MBRs)
4: for each GPU Blocki, 0 ≤ i < (m + n), do in par-

allel
5: for each xj,0, xi,0 ≤ xj,0 ≤ xi,1 do
6: if (yj,0, yj,1) intersects (yi,0, yi,1) then
7: if MBRj ∈ S then
8: Add pair (i, j) to the output set
9: else

10: Add pair (j, i) to the output set
11: end if
12: end if
13: end for
14: end for
15: end procedure

scattered in a Ha ×Wa rectangle area. The sequential time
complexity of CRadixSort is O(n · b) where b is the average
number of digits of the coordinate values. Also, Algorithm 1
includes two nested loops. The outer loop has n + m iter-
ations. The inner loop goes through all the x-coordinates
lying in the range (rankIndex(xi,0), rankIndex(xi,1)) for a
given MBRi which on the average has davg elements (w̄/Wa

fraction of (n+m) MBRs).

davg =
w̄ × (n + m)

Wa
(2)

Thus, the algorithm’s sequential complexity is:

= O((n + m) · b +
w̄

Wa
· (n + m)2) (3)

The complexity of the algorithm depends on w̄
Wa

factor

which is proportional to the number of output pairs. If w̄
Wa

=

O( 1
n+m

) then the second term in equation 3 becomes linear

and therefore total complexity becomes O((n+m)×b). This
is what usually happens in real datasets. If we have w̄

Wa
=

O(1), the complexity would be order of O((n + m)2). One
of the scenarios that may lead to O((n+m)2) complexity, is
the case with w̄ ≈Wa which means each MBR is almost as
wide as the entire area and therefore has potential overlap
with almost all the other MBRs.

SMF has linear space complexity. As described in the
preamble of Section 3.4, it estimates the maximum number
of overlapping MBRs for a given MBR and then allocates
the memory in advance. Although this estimation has some
time-overhead, applying this strategy makes it possible for
SMF to test large MBR layers for intersection. SMF could
process two datasets each including more than 1M MBRs
on a GPU node with 6 GB of the main memory.

3.4.2 SMF Performance
We have used a sequential optimized GEOS library as base-
line to compare with SMF. Table 2 shows our experimental
results using all three datasets introduced in Section 3.2.

The results in this table shows up to 20-fold speedup. As
we explained in the related work, RTree method introduced
in [13] can achieve more speedup versus SMF, but it cannot

Table 2: Running time of SMF and GEOS for MBR
filtering

Dataset
Running time (ms)

] of Outputs
GEOS SMF

Urban 197 16 28,687
Telecom 2,683 240 747,086
Water 13,048 676 1,020,458

query datasets with more than around 20,000 MBRs in the
second layer because the memory space requirement of its
current implementation is O(n·m) due to matrix based data
structure for O(1) access.

Also to show the scalability, Figure 4 plots transfer time
and SMF running time versus input size in the largest dataset.
As shown, when input size becomes larger, transfer time lin-
early increases while SMF growth is closer to linear order
than O((n + m)2) which implies w̄

Wa
= O( 1

n+m
).
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Figure 4: Transfer time and SMF running time for
various input sizes. SMF is almost linear.

3.5 Common MBR Filter
CMF is an additional level of filtering that is applied on
polygon edges to reduce number of candidate polygon pairs
as well as the number of edges to be considered in the refine-
ment phase by eliminating those edges that do not intersect
the Common MBR. Given a pair (P1, P2) ∈ C, with cor-
responding MBRs, MBRP1 and MBRP2, their Common
MBR (MBRP1∩P2) is defined as the area covered by both
of them (see green rectangles in Figure 5).

Algorithm 2 shows how CMF eliminates more polygon
pairs from SMF output set C and classifies the remain-
ing pairs into two groups for point-in-polygon and edge-
intersection tests for the refinement phase while it eliminates
all the non-intersecting edges from each polygon which does
not intersect with the respective Common MBRs. The cor-
rectness of Algorithm 2 will be shown through Lemma 2
and 3.

Lemma 2. CMF-Pre-PnP Test: Given polygon pair
(P1, P2) ∈ C with corresponding minimum bounding rectan-
gles MBRP1 and MBRP2, if P1 contains P2, then MBRP1

contains MBRP2. In other words, MBRP1∩P2 = MBRP2.

Proof. MBRP1 contains P1 from definition. Also P1

contains P2 from Lemma assumption. Applying transitive
property over contain relation leads to MBRP1 contains P2.



Figure 5: Examples for three CMF output classes:
(a) MBRP1∩P2 = MBRP2 and CMF will tag (P1, P2)
for “P1 contains P2” point-in-polygon test. (b)
MBRP1∩P2 6= MBRP1 and MBRP1∩P2 6= MBRP2 and
P1∩MBRP1∩P2 6= ∅ and P2∩MBRP1∩P2 6= ∅, therefore
(P1, P2) is directly sent to edge-intersection test. (c)
P2∩MBRP1∩P2 = ∅ which means the pair is disjoint.

Now lets assume MBRP1∩P2 = MBRc 6= MBRP2. Be-
cause P2 is inside of both MBRP1 and MBRP2, it is also
inside of MBRc and since MBRP2 contains MBRc and
MBRc 6= MBRP2, MBRc is minimum bounding rectan-
gle of P2 that is on the contrary with lemma assumption
(minimum bounding rectangle of P2 is MBRP2). Thus,
MBRP1∩P2 = MBRP2

Lemma 2 provides a necessary condition for point-in-polygon
test. We can classify a given polygon pair of C, (P1, P2),
into one of the three following categories:1) Pairs with
MBRP1∩P2 = MBRP1, 2) Pairs with MBRP1∩P2 = MBRP2,
and 3) Pairs with partially-overlapping MBRs (see Figure 5).
The first two classes can be added to within candidate set W
for actual point-in-polygon test. By applying Lemma 2 be-
fore doing this test over all C elements, we gain performance
due to the following reasons:

• For any given pair, verifying whether Lemma 2 holds
true is only a constant-time operation while actual
point-in-polygon test takes O(ne) where ne is the num-
ber of edges.

• Join predicate requires testing for both “P1 contains
P2” and “P2 contains P1” cases, but Lemma 2 iden-
tifies which polygon may contain the other one that
eliminates one unnecessary test.

Later in Section 3.5.1, we provide more analysis.

Lemma 3. CMF-Pre-Edge-intersection Test: Given
two edges EP1(i) and EP2(j) from polygons P1 and P2,
if the edges intersect, then they either completely lie inside
MBRP1∩P2 or intersect it. In either case, their intersection
point is not outside MBRP1∩P2.

Proof. For the explanation refer to [6].

Algorithm 2 Common MBR filtering algorithm

Input: set C Output: sets W and I

1: procedure CMF-filter
2: for each pair (i, j) ∈ C do
3: if MBRi∩j == MBRi then
4: W ← W ∪ (i, j) for polygon i inside polygon j

test
5: else if MBRi∩j == MBRj then
6: W ← W ∪ (i, j) for polygon j inside polygon i

test
7: else
8: Êi ← {Ei(k) | Ei(k) intersects MBRi∩j}
9: Êj ← {Ej(k) | Ej(k) intersects MBRi∩j}

10: if |Êi| == 0 or |Êj | == 0 then
11: Discard (i,j)
12: else
13: I← I ∪ (i, j)
14: end if
15: end if
16: end for
17: end procedure

Lemma 3 provides a necessary condition for edge-intersection
test. It says that given (P1, P2) pair, if any edge from P1
lies completely outside of MBRP1∩P2, it will not intersect
with P2. As a result, we can remove that edge from polygon
edge list for the refinement phase. The following Corollary
is a direct result of Lemma 2 and 3 and it can be used to
detect some disjoint pairs in C before refinement phase.

Corollary 1. Given pair (P1, P2) ∈ C, let ÊP1 =
{i|EP1(i) either intersects MBRP1∩P2 or lies inside it}.
Similarly, we can define ÊP2, intersecting-edge candidate set
for P2. P1 and P2 are disjoint if (P1, P2) /∈W, the within

candidate set, and ÊP1 = ∅ or ÊP2 = ∅

Proof. It can be derived directly from Lemma 2 and
Lemma 3.

To illustrate Lemma 2 and 3 and Colorrary 1, three dif-
ferent examples are shown in Figure 5. Figure 5 (a) shows
a case for Lemma 2 where MBRP1∩P2 = MBRP2. In this
example, CMF assigns (P1, P2) to within candidate set for
point-in-polygon test for “P1 contains P2” case. In Fig-
ure 5 (b), MBRP1∩P2 is equal to none of the MBRs. As
such, using Lemma 3, CMF makes intersecting-edge candi-
date sets for P1 and P2 that are ÊP1 = {s1, s2, s3} and

ÊP2 = {c1, c2} respectively. In this case, because neither

of ÊP1 and ÊP2 is empty, CMF categorizes (P1, P2) into
Intersecting-Edge candidate set. Later, EI Test will use only
ÊP1 and ÊP2 instead of EP1 and EP2 for refinement phase.
Figure 5 (c) is an example of Corollary 1 as (P1, P2) /∈W

and ÊP2 = ∅. Therefore, CMF identifies this pair as disjoint
and just discards it.

CMF thus classifies elements of C as follows:

1. Within candidate set (W): set of all the polygon pairs
(P1, P2) ∈ C such that MBRP1∩P2 is either equal to
MBRP1 or MBRP2.

2. Intersecting-edge candidate set (I): set of all polygon

pairs (P1, P2) ∈ C such that (P1, P2) /∈W and ÊP1

and ÊP2 are non-empty.



3. Disjoint set : Polygon pairs (P1, P2) ∈ C that are nei-
ther in W nor in I.

As CMF iterates through each edge once, the algorithm
complexity is O(ne) which ne is number of edges and its im-
plementation is straightforward. For a polygon pair (P1, P2),
we assign a two dimensional GPU block to handle edges
of each polygon in a separate block dimension. Polygon
edges are evenly distributed among threads in each dimen-
sion to make the algorithm load-balanced. Each thread ver-
ifies Lemma conditions for its data and partially keeps list
of potentially intersecting edges. Finally, using shared mem-
ory and reduction tree, algorithm classifies pairs in C based
on results and prepares intersecting-edge candidate sets ÊP1

and ÊP2.

3.5.1 CMF Analysis
For a given candidate set C, we define edge-reduction factor
as

RE =

∑
(i,j)∈C |Ei|+ |Ej |∑
(i,j)∈C |Êi|+ |Êj |

(4)

In the worst-case, all edges may lie inside their common
MBR or intersect it and RE = 1, but based on our exper-
imental results, shown in Table 3, RE ≈ 40 which shows
effectiveness of CMF in pruning polygons before refinement
phase. Table 3 shows timing and workload of edge-intersection
test with and without CMF. CMF eliminates almost two-
third of pairs by applying Lemma 3. It also, makes edge-
intersection test almost 30 times faster by making intersecting-
edge candidate set 40 times smaller than all the edges.

Table 3: CMF effect on reducing workload of the
refinement phase for Water datasets.

No CMF With CMF
Time (ms) 120,751 4,401

] of Edge-intersecting pairs 566,656 198,142
] of edges (layer1) 1,048,479,573 25,969,322
] of edges (layer2) 954,431,290 20,451,866

The following lemma proves that even in the worst-case
scenario, CMF will reduce number of operations in our point-
in-polygon test.

Lemma 4. PnP analysis: Given a candidate set C of
potentially intersecting polygons, applying CMF filter will
always reduce the overall work for point-in-polygon test.

Proof. Equation 5.a and 5.b represent the number of
operations in point-in-polygon test with and without CMF
filter.

k · |C|+ N̄e · |W| (a)

2 · N̄e · |C| (b)
(5)

where N̄e is the average number of edges in polygons and
k is a constant factor such that in general, k < N̄e (k ≈ 8
as we only need to test for two MBR equalities each with 4
coordinate values). We need to show 5.a < 5.b. Since 0 ≤
|W| ≤ |C| and k < N̄e, we have N̄e · |W| < (2 · N̄e−k) · |C|.
As such the condition always holds true.

Figure 6 shows CMF running time for various data sizes.
As shown, CMF running time increases linearly as data size
becomes larger.
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Figure 6: Running time of CMF versus various
range of input sizes.

3.6 Refinement Algorithms
The refinement phase removes all the non-intersecting poly-
gon pairs by finding the pairs with intersecting edges or de-
tecting if one of the polygons lies inside the other one. Se-
quential plane sweep-based edge-intersection algorithms are
generally used in the refinement phase but these methods
have not been proven suitable for fine-grained data paral-
lel processing over GPUs [3]. While some work has been
done to parallelize the plane sweep on CPU [10], none of the
proposed candidates result in an algorithm amendable to
fine-grained SIMD parallelism such as with GPUs. Our ap-
proach is embarrassingly parallel. For a given polygon pair
(i, j), it performs an all-to-all edge-intersection test with

O(|Êi| · |Êj |) time complexity.
As we described in Section 3.3, our refinement phase in-

cludes two subsystems. Although we have not developed any
new algorithm for these two components, efficiently paral-
lelizing their sequential counterparts over GPU is not a triv-
ial task and requires some design changes to fit them into
shared memory model. In the following subsections, we ex-
plain some of their implementation details.

3.6.1 Parallel Point-in-Polygon Test
To detect if a polygon is inside the other polygon, we have
used point-in-polygon test. We apply crossing test method
to detect if a given test point is inside a polygon [17]. The
technique is to shoot a ray from the test point along an axis
and count number of crossings of the polygon edges to check
if it is odd. Sequential implementation of this algorithm
uses a for loop that iterates through all vertices of a given
polygon. We have implemented this algorithm over GPU by
breaking down this for loop by distributing equitably among
different threads of a GPU-block. Finally, using a reduction
tree algorithm, we combine the partial results from different
threads.

We compare load-balanced PnPTest with two other algo-
rithms 1) sequential version of crossing test and 2) naive
point-in-polygon test over GPU in which each thread is re-
sponsible for the entire for loop and there is no workload
distribution for a given test point. The results are sum-
marized in Table 4. PnPTest speedup is in the 28 to 30-
fold range compared to the sequential version. Our load-
balanced point-in-polygon test also achieved a good speedup



in 8 to 9-fold range versus naive GPU version which demon-
strates the importance of GPU-load-balancing.

Table 4: Running time of PnPTest versus sequential

Dataset N̂e.|W|
Running time (ms)

Seq.
GPU

Naive PnPTest

Urban 11,266,110 672 210 24

Telecom 7,615,041 165 45 6

Water 105,314,500 22,058 6,459 725

PnPTest running time of Urban dataset is greater than
Telecom dataset while number of polygons in Telecom is
much larger because as shown in Lemma 4, the time com-
plexity of our point-in-polygon algorithm is O(N̂e.|W|).

3.6.2 Parallel Edge-Intersection Test
As we explained in Section 3.3, elements of I and those
pairs from W which do not pass point-in-polygon test suc-
cessfully along with intersecting-edge candidate sets gen-
erated by CMF are sent to edge-intersection test compo-
nent. We implemented a load-balanced edge-intersection
algorithm using a shared memory model. The algorithm
assigns a GPU-block to each pair of polygons. Within a
block, edge pairs are distributed evenly among threads. For
actual intersection test, the algorithm calculates intersec-
tion point of a given edge pair, then tests if this point lies
on the both edge segments (and not outside them). We
have implemented this algorithm efficiently by applying two
optimization techniques:

• Calculating line intersection requires floating point com-
putations which is the most time consuming opera-
tion in any processor. To optimize the algorithm, first
we test if MBRs built from edges have overlap and
then, calculate intersection point for only the MBR-
overlapping edge pairs.

• All threads within a block work over the same polygon
pair and once a thread finds two cross-layer intersecting-
edges, the polygon pair can be identified as output. As
a result, if a thread detects such a case, it sends signal
to other threads in the block to terminate. This makes
their resources available for other blocks.

3.6.3 Refinement Analysis
Figure 7 shows running time for PnPTest and EITest for
various input sizes.

As shown, PnPTest has a linear running time while EITest
is O(n2). As point-in-polygon test iterates through all ver-
tices of a given polygon, linear complexity is expected. On
the other hand, the complexity of EITest is quadratic, be-
cause edge-intersection algorithm, for a given pair (P1, P2)

with intersecting-edge candidate sets ÊP1 and ÊP1, tests for
all to all cross-layer edge-intersection. As a result, complex-
ity is O(|ÊP1| · |ÊP2|).

4 Performance Evaluation
First, we describe the experimental setup and then we com-
pare the results with other base-line methods.
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Figure 7: Linear running time of PnPTest versus
quadratic complexity of EITest for different input
sizes.

4.1 Experimental Setup
We have done all the GPU experiments on a compute node
that has 12-core Intel Xeon CPUE5-2650 CPU running at a
clock speed of 2.0 GHz with 64GB of main memory. The
node is equipped with a NVIDIA GTX 780 GPU that has
6GB of memory with 288.4 GB/sec memory bandwidth.
We have verified that similar results are obtained on other
NVIDIA GPU’s including Tesla K40 models.

To the best of our knowledge, there is no GPU-based work
which has implemented ST Intersect operation. There-
fore, we used PostgreSQL version 9.4 with PostGIS ver-
sion 2.2 and GEOS library version 3.4.2 [12] as sequential
baselines for comparison with GCMF. PostGIS is a spa-
tial database extender for the PostgreSQL object-relational
database. It adds support for geographic objects allowing
spatial queries to be run in SQL. We ran PostGIS on a
desktop with 3.6 GHz processor with 16 GB of main mem-
ory. Since our datasets are shapefiles, we use shp2pgsql tool
in PostGIS for converting shape files into database tables.
ST Intersect predicate was used in spatial join query [12].
We also used Intersects method of PreparedGeometry class
that is the optimized and indexed implementation of Ge-
ometry class of GEOS C + + library. GEOS experiments
are done on a node equipped with 2.6 GHz Intel Xeon E5-
2660v3 processor in the Roger NCSA cluster.

4.2 Results
Table 5 shows end-to-end running time of different algo-
rithms on different datasets including CPU-GPU transfer
times. The relative speedup gain for our GPU-based sys-
tem is up to 39-fold versus both GEOS library and PostGIS
software.

Table 5: End-to-end running time for three different
methods

Dataset
Running time (ms)

] of Outputs
PostGIS GEOS GCMF

Urban 3,120 5,770 149 23,634
Telecom 17,900 8,200 560 581,351
Water 232,122 148,040 7,856 539,974
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Figure 8: Detailed running timing of system compo-
nents for Urban, Telecom and Water datasets (log
scale)

4.2.1 System Component Analysis
We have provided detailed running time of each system com-
ponent in Table 6 and Figure 8 for all datasets. As value
ranges are large, time in the bar chart is presented in the
logarithmic scale for easier comparison.

Although by applying CMF filter, we tried to reduce edge-
intersection processing time, this component still takes more
than half of the total running time.

Table 6: Detailed running time of system compo-
nents for all three datasets

Dataset
Detailed running time (ms)

Transfer SMF CMF PnPTest EITest

Urban 12 16 53 24 44
Telecom 55 240 89 6 170
Water 383 676 1671 725 4401

Our real datasets are heterogeneous in size. They include
polygons with various ranges, from less than 100 vertices
up to 50,000 vertices, that makes load-balancing task hard.
We tried evenly distributing the edge-intersection test over
all threads across all blocks by assigning a constant num-
ber of tests to each thread. But because of inefficient use
of memory bandwidth and other GPU resources, the per-
formance was worse than our simpler current method. De-
termining the impact of this load-imbalance on the perfor-
mance requires comprehensive understanding of the behav-
ior of GPUs under these circumstances that is part of our
future work.

Finally, Table 7 summarizes time and space complexities
of each phase of GCMF system. In the filtering phases,
GCMF estimates the required memory space for the output
and then allocates the memory. To estimate space, we have
used two strategies. 1) Roughly estimating the number of
outputs in SMF. 2) Counting the exact number of outputs
and then allocate the memory in CMF. Therefore, for these
components, the space complexity is proportional to their

corresponding outputs k1 and k2, respectively. Our space-
optimized design lets the system handle large datasets on a
single GPU. Also, time complexity of most of the phases is
linear. Edge-intersection is an exception, however, because
of effective linear filters (SMF and CMF ) applied before it,
workload of this operation significantly reduces. As Table 7
shows, for Water dataset, more than 99% of all possible
polygon pairs are eliminated by SMF, and then CMF fur-
ther reduces 65% of the remaining pairs. Finally, the total
running time of the filter phases is less than one-third of the
overall execution time, which shows the effectiveness of the
proposed filtering methods. However, Edge-intersection test
is still the most time-consuming operation as it takes more
than 50% of the execution time.

5 Conclusion
In this paper, we have introduced GCMF, an end-to-end
spatial join system for non-indexed polygonal data over a
single GPU platform. The system included 4 subsystems:
two filtering components as well as point-in-polygon test and
edge-intersection test subsystems. We proposed sort-based
MBR filtering algorithm for GPU with linear average time
complexity. Also, we introduced CMF with linear time com-
plexity as an efficient filtering technique to reduce the num-
ber of polygon candidate pairs before the refinement phase.
We also have shown that CMF reduces the size of remain-
ing candidate pairs by pruning disjoint edges apriori. Our
experimental results over real datasets yielded up to 39-fold
relative speedup gain versus optimized sequential GEOS li-
brary and Postgres with PostGIS spatial database system.
Moreover, it confirmed the efficiency of CMF in removing
about two-third of pairs from the set of candidate polygons
before edge-intersection. It also reduced the size of polygon
pairs for refinement phase up to 40-fold smaller.

Our plan is to integrate this system into a MPI based
system which can partition 1-3 order larger datasets among
the compute nodes, such as our MPI-GIS system [15] [16]
that has a potential for speeding up such systems by 1-2
orders of magnitude by effectively employing GPUs.
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