
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

IEEE Transactions on Parallel and Distributed Systems, Vol. xx, No. xx, Xxx 2018

Exploiting Hardware Multicast and GPUDirect
RDMA for Efficient Broadcast

Ching-Hsiang Chu, Student Member, IEEE, Xiaoyi Lu, Ammar A. Awan, Hari Subramoni,
Bracy Elton, Senior Member, IEEE and Dhabaleswar K. Panda, Fellow, IEEE

Abstract—Broadcast is a widely used operation in many streaming and deep learning applications to disseminate large amounts of
data on emerging heterogeneous High-Performance Computing (HPC) systems. However, traditional broadcast schemes do not fully
utilize hardware features for Graphics Processing Unit (GPU)-based applications. In this paper, a model-oriented analysis is presented
to identify performance bottlenecks of existing broadcast schemes on GPU clusters. Next, streaming-based broadcast schemes are
proposed to exploit InfiniBand hardware multicast (IB-MCAST) and NVIDIA GPUDirect technology for efficient message transmission.
The proposed designs are evaluated in the context of using Message Passing Interface (MPI) based benchmarks and applications. The
experimental results indicate improved scalability and up to 82% reduction of latency compared to the state-of-the-art solutions in the
benchmark-level evaluation. Furthermore, compared to the state-of-the-art, the proposed design yields stable higher throughput for a
synthetic streaming workload, and 1.3x faster training time for a deep learning framework.

Index Terms—Broadcast, Deep Learning, Hardware Multicast, GPU, GPUDirect RDMA, Heterogeneous Broadcast, Streaming

F

1 INTRODUCTION

EMerging high-performance computing (HPC) systems
are marked by two factors: 1) the usage of accelerators

like general purpose graphics processing units (GPGPUs) to
boost their computing capabilities, and 2) high-performance
commodity interconnects such as InfiniBand (IB) to push
frontier of performance and scalability. As a result, numer-
ous HPC applications, runtimes, and frameworks are adopt-
ing the massive parallelism computing power of GPUs [1],
[2], [3], [4], [5], [6].

Many GPU-based applications behave like a streaming
application [1], [7]. Specifically, a GPU-based streaming ap-
plication is generally comprised of two concurrent phases:
1) A compute-intensive phase that is executed in parallel by
multiple workers on GPU nodes, with the main computa-
tion executed on GPUs typically along with traffic between
the host CPU and the GPUs using PCIe or resources, and 2)
A communication phase where applications rely heavily on
broadcast-type operations to move data from a single source
to multiple GPU-based computing workers.

Deep Learning (DL) includes GPU-based HPC appli-
cations, which can benefit from accelerated computation
and communication. DL applications have been widely
used to model and solve various real-world problems in
areas such as bioinformatics, computer vision, and natural
language processing. As DL applications require processing
increasingly large datasets, it is becoming common for them
to utilize GPU-enabled HPC clusters. For example, many
DL frameworks, such as Caffe [8] and its variants [2], [9],
Facebook Caffe 2 [10], Google TensorFlow [11], Microsoft

• C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, D. K. Panda are with
the Department of Computer Science and Engineering, The Ohio State
University, Columbus, OH 43210–1277.
E-mail: {chu.368, lu.932, awan.10, subramoni.1, panda.2}@osu.edu

• Bracy Elton is with Engility Corporation, WPAFB, OH 45433–7802.
E-mail: bracy.elton@engility.com

Cognitive ToolKit (CNTK) [12], have been designed to easily
and efficiently conduct the time-consuming DL training
process on GPU-enabled HPC clusters.

In streaming and DL applications, collective operations
such as broadcast are often involved for exchanging large
amounts of data among GPUs across nodes on HPC clusters.
CA-CNTK framework [13], for example, relies heavily on
inter- and intra-node broadcast operations to exchange data
among all GPUs. As shown in Figure 1(a) (see Section 7 for
configuration information), we can see a significant increase
of communication time on broadcast operations as the scale
increased. Moreover, as can be seen in Figure 1(b), more
than half of message sizes of broadcast operations are higher
than 4 KB and the maximum message size of broadcast can
be as large as around 128 MB here. This implies a urgent
need to optimize broadcast operations for large messages
in order to conduct efficient large-scale DL training process.
Moreover, applications can assign GPU nodes to different
groups, e.g., communication groups in the Message Passing
Interface (MPI), with each group working on different sets
of data. Such application scenarios require concurrently
performing multi-source broadcast operations over an entire
cluster—adding challenges for achieving high performance
for large-scale jobs. More efficient and scalable multi-source
broadcast operations can help improve the performance of
streaming and DL applications on GPU clusters.

0
20
40
60
80
100

4 8 16 4 8 16 4 8 16

AlexNet VGG ResNet-50Ag
gr

eg
at

e
Ap

p.
 T

im
e

(%
)

Number of GPU nodes for each DL netowork

Broadcast Other Communications Compute

(a) Application Time

0
20
40
60
80
100

4 8 16 4 8 16 4 8 16

AlexNet VGG ResNet-50M
es

sa
ge

 R
an

ge
 U

se
d

(%
)

Number of GPU nodes for each DL netowork

0-4KB 4KB-1MB 1MB+

(b) Message Sizes Used for Broadcast

Fig. 1. Profiling of training process for image classification using CA-
CNTK framework [13] with ImageNet Dataset [14] on a GPU cluster.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2018-1658 1

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

However, traditional broadcast schemes, e.g., Ring and
K-nomial-based, are not well-optimized for large-scale
GPU-based DL applications. In these schemes, the number
of communication steps grows as the number of partici-
pating GPU processes grows, eventually causing scalability
issues at large scales. Although highly scalable InfiniBand
hardware-based multicast (IB-MCAST) [15] technology has
been adopted in HPC middleware to enhance the scalability
on traditional homogeneous HPC clusters [16], [17], [18],
[19], they have not yet been optimized for large message
multi-source broadcast scenarios, situations that appear
commonly in DL applications. Also, heterogeneous broad-
cast support is required for streaming applications on HPC
cluster systems. These issues lead to the following broad
challenges:

• Accurately modeling, and analyzing fundamental
performance bottlenecks of existing broadcast opera-
tions on GPUs

• Determining techniques to leverage IB-MCAST and
other GPU advanced features, such as GPUDirect
RDMA (GDR) to design efficient and scalable broad-
cast with large messages on GPU clusters

• Achieving high overlap and scalability for multi-
source broadcast operations, so that multi-source
broadcast operation latency increases sublinearly
(near constant) commensurate with an increasing
number of sources

• Determining attainable theoretical and practical per-
formance benefits for deep learning applications

To begin exploring these challenges, this paper first
models existing broadcast schemes, i.e., Ring, K-nomial,
and IB-MCAST, and analyzes their performance bottlenecks
on GPU clusters. Based on this analysis, we propose a
novel broadcast design built on message streaming to better
exploit IB-MCAST and GDR technologies for efficient large
message transfers. The proposed design can provide high
overlap for multi-source broadcast operations. The exper-
imental results show that our proposed design can attain
82% latency reduction compared to state-of-the-art solutions
in a benchmark-level evaluation. The results also show a
24% performance improvement in CNTK deep learning
frameworks across varied training data sets. Our model val-
idation shows that the proposed analytical model matches
experimental results within 10%. Our model also predicts
that the performance of our proposed design achieves near-
constant latency for a single broadcast operation with an
increasing number of participating GPU processes, while
the latency of our proposed broadcast design increases sub-
linearly with an increasing number of broadcast sources. To
summarize, towards improving broadcast operations, this
paper makes the following key contributions:

• Provides and evaluates analytical models to capture
essential performance behavior of alternative broad-
cast schemes on GPU clusters (Section 3)

• Proposes efficient and scalable zero-copy heteroge-
neous broadcast operations by taking advantage of
IB-MCAST and IB Scatter-Gather-List (SGL) features,
and NVIDIA GDR technology (Section 4)

• Proposes advanced design of GPU-based multi-
source streaming broadcast operation for large-size
GPU-to-GPU message transfers (Section 5)

• Proposes efficient intra-node topology-aware broad-
cast operations by leveraging CUDA Inter-Process
Communication (IPC) features for multi-GPU sys-
tems (Section 6)

• Evaluates performance and analyzes the proposed
design for deep learning models on a real-world
GPU-enabled InfiniBand cluster (Section 7)

2 BACKGROUND

In this section, we review state-of-the-art hardware plat-
forms and important software features available in Infini-
Band (IB) host channel adapters (HCA) and switches, and
NVIDIA GPUs.
2.1 InfiniBand Features
InfiniBand is one of the most widely deployed commod-
ity network technologies in HPC systems [15]. Similar to
TCP/IP protocol, IB offers four transport modes: Reliable
Connection (RC), Reliable Datagram (RD), Unreliable Con-
nection (UC), and Unreliable Datagram (UD). Most impor-
tantly, it allows for using remote direct memory access
(RDMA) technology to significantly improve the perfor-
mance of network communication. Notable features related
to this paper are described as follows.

InfiniBand provides support for a so-called scatter-
gather list (SGL) in allowing data transfer operations from
multiple memory locations in a single operation. While
using channel semantics, InfiniBand provides support for
gathering data from multiple memory locations within a
node and transferring it to a receiver in one operation.
Similarly, the receiver side also has the flexibility to scat-
ter incoming data to different, possibly non-contiguous,
memory locations. Beside common communication patterns
like one-to-one and one-to-all, multicast is a one-to-many
communication pattern. Absent hardware support for it,
multicast operations are typically achieved via multiple
point-to-point communications, i.e., software multicast. The
IB hardware multicast (IB-MCAST) feature allows for issu-
ing a single multicast send operation with the IB switch itself
handling the one-to-many operation in hardware. Compared
to a software-implemented multicast operation, employing
hardware multicast technology can significantly reduce net-
work traffic and provide high scalability.
2.2 NVIDIA GPUs and GPUDirect Technology
NVIDIA graphics processing units (GPUs) have gained sig-
nificant attraction in the HPC community in recent years.
An ever increasing number of redesigned classical HPC
applications have emerged that take advantage of massively
parallel GPU hardware. In general, GPUs are connected
as peripheral devices on the Peripheral Component Inter-
connect Express (PCIe) bus or NVLink [20]. The NVIDIA
Compute Unified Device Architecture (CUDA) is the default
parallel programming platform and programming model
for NVIDIA GPUs. Successive generations of CUDA have
introduced new features to leverage the potential of next-
generation hardware features in GPUs. CUDA 4.0 intro-
duced Unified Virtual Addressing (UVA), which exposes
a unified address space for CPU and GPU memory. In

2

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

addition, the GPUDirect family of features [21], alleviating
the overhead of an extra data transfer operation otherwise
required to push data from GPU memory into the network.

To address limitations of intra-node Peer-to-Peer (P2P)
communication between GPUs, Inter-Process Communica-
tion (IPC) technology was introduced in CUDA 4.1. CUDA
IPC allows direct GPU-to-GPU memory access without in-
volving the CPU for assistance. Furthermore, the GPUDirect
RDMA (GDR) mechanism introduced in CUDA 5.0 enables
third-party PCIe devices to directly access GPU-resident
data, completely bypassing CPU memory. This provides a
path for moving data to/from GPU device memory over an
IB network in a way that completely bypasses CPU memory.
This also helps in reducing PCIe resource consumption by
decreasing the number of PCIe links involved.

3 MODELING AND ANALYSIS OF EXISTING
BROADCAST ALGORITHMS ON GPU CLUSTERS

Existing broadcast algorithms for GPU-resident data are
typically host-based algorithms. While host-based broad-
cast algorithms have been well-studied, accelerators, such
as GPUs, pose features and issues calling for additional
investigation and consideration. In this section, we provide
detailed models and analysis thereof for the most com-
monly used broadcast algorithms. Furthermore, we identify
limitations of existing broadcast schemes and present how
broadcast operations on GPU clusters may benefit from
algorithms employing IB-MCAST and GDR features.

3.1 Existing Broadcast Schemes and Their Perfor-
mance Models

In applying existing broadcast algorithms to GPU-resident
data, the main issue regards how an HCA retrieves such
data. Existing communication libraries typically move data
from GPU to CPU host memory, and then apply host-
based broadcast algorithms, which are well-studied in the
literature [22], [23], [24], [25], [26]. However, simply em-
ploying existing host-based broadcast algorithms may neg-
atively impact performance. There are two typical ways for
supporting GPU-aware broadcast with existing algorithms:
(1) leveraging NVIDIA GDR-like technology to allow an
HCA to read/write data directly from/to GPU memory;
(2) staging GPU-resident data to CPU host memory. In this
section, we discuss the most popular GPU-aware broadcast
algorithms, i.e., ring-based and K-nomial-based ones, from
the perspective of the broadcast sender. Table 1 summarizes
notations used herein.
3.1.1 Ring-based Broadcast Algorithm Performance Model
In a ring-based broadcast algorithm, processes form a logical
ring structure. Beginning with the broadcast sending pro-
cess, each process sends data to its logical neighbor. Overall,
this takes n−1 steps. In each step, the process takes (ts+ M

BG
)

time to push data to the network. Then, naively applying
GDR technology in ring-based algorithms, the time for such
an operation is given by

T(Bcast Ring GDR) = (n− 1)× (ts +
M

BG
) . (1)

To further improve performance, i.e., reduce the time for
the operation, one can divide a message into smaller chunks

TABLE 1
Notations for the Analytical Models

Name Description Unit

n Number of processes N/A
m Number of broadcast sources N/A
ts Set up time for sending data sec

to(n) Overhead for issuing an IB-MCAST packet sec
M Message size bytes
C Size of a data chunk bytes
U Maximum Transmission Unit for IB-MCAST bytes
BH Bandwidth of reading Host memory bytes/sec
BG Bandwidth of reading GPU memory (GDR read) bytes/sec

BH2D Bandwidth between Host and GPU memory bytes/sec

and send those in a pipelined fashion. Data communication
can then be overlapped across the ring, the cost then being,

T(Bcast Ring GDR Pipeline) = (
M

C
+ (n− 2))× (ts +

C

BG
) ,

(2)

where each step then takes time ts + C
BG

to push data to
the network, with M

C + (n − 2) steps because the sender
requires M

C steps to push all data chunks to its neighbor
and it takes (n − 2) steps for the last data chunk to travel
through all processes. Compared to the pure GDR approach
(Equation 1), the number of steps increases from (n − 1) to
M
C + (n − 2) while the cost (time) per step decreases from
M
BG

to C
BG

. Indeed, it is important to tune the data chunk
size (C) to optimize performance, minimizing latency and
maximizing throughput.

As the bandwidth between a CPU and an HCA (BH)
is typically higher than the bandwidth between a GPU
and an HCA (BG) in current architecture, another common
approach is to stage GPU data through CPU host memory.
However, this process incurs overhead for moving data
between GPU and host memory. Therefore, a performance
model for the scheme without pipelining is as follows:

T(Bcast Ring Staging) =
M

BH2D
+ (n− 1)× (ts +

M

BH
) . (3)

3.1.2 K-nomial-based Broadcast Algorithm Performance
Model
The next algorithm examined is the K-nomial algorithm, the
most popular broadcast algorithm. When K is two, this is
the well-known Binomial algorithm. The main difference
between ring-based and K-nomial algorithms is that the
latter reduce the communication cost from being linear to
logarithmic [22]. Therefore, similar to ring-based algorithms,
performance models for K-nomial-based broadcast algo-
rithms for GPU-resident data can be represented as follows:

T(Bcast K−nomial GDR) = dlogk ne × (ts +
M

BG
) , (4)

T(Bcast K−nomial Staging) =
M

BH2D
+ dlogk ne × (ts +

M

BH
) ,

(5)

T(Bcast K−nomial GDR Pipeline) =

(
M

C
× dlogk ne)× (ts +

C

BG
) . (6)

Note that the K-nomial algorithm with GDR and pipelining
still requires dlogk ne steps to allow the sender to push one
data chunk into the network, with such M

C data chunks.

3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

TABLE 2
Comparison of broadcast schemes in the literature

Bibliography Reference Scheme Pipeline Scalability Heterogeneous Support GPU-Awareness Capability
GDR Staging through Host

[27] Ring Y Low N Y N
[28] Ring Y Low N Y Y
[24] Ring+Binomial Y Medium N N N
[25] Binomial Y Medium N N N
[29] Ring Y Medium Y Y Y
[17] IB-MCAST+Ring N Medium N N N
[18] IB-MCAST N High N N N
[19] IB-MCAST N High N Y N
[30] IB-MCAST N High Y Y N
[31] IB-MCAST Y High N Y Y

Proposed design IB-MCAST Y High Y Y Y

3.1.3 IB-MCAST-based Broadcast Algorithm Performance
Model
In IB-MCAST-based broadcast schemes, the communication
cost is much less affected by the number of nodes than it
is by the IB Maximum Transmission Unit (MTU) for UD
(U) [19], as discussed below in Section 3.2. Therefore, it
takes M

U steps to push data to the network. Based on our
observations, there is a small overhead (to(n)), discussed
in Section 8, for issuing an IB-MCAST operation. A perfor-
mance model for broadcast operations based on IB-MCAST
and GDR is then given by

TBcast MCAST GDR =
M

U
× (ts + to(n) +

U

BG
) . (7)

3.2 Analysis
The importance of scalability of broadcast-like collectives
for GPU-resident data increases commensurate with GPU
cluster system size. Table 2 summarizes key differences
among commonly used broadcast schemes in the literature.
From the performance models without IB-MCAST shown
in Section 3.1, we can observe that even when employ-
ing staging or pipelining mechanisms, the number of nodes
involved fundamentally impacts the performance of ring-
based and K-nomial-based broadcast algorithms. However,
in the IB-MCAST-based broadcast algorithm, the number
of nodes involved has little-to-no impact on performance.
Therefore, employing IB-MCAST provides an opportunity for a
scalable broadcast operation not only for traditional CPU-based
but also for GPU-enabled clusters.

The main performance bottleneck of the existing IB-
MCAST-based broadcast scheme for GPU data is the PCIe
P2P read limit of GDR [19], [32], BG, as defined in Table 1,
and the IB MTU limit. As a result, existing IB-MCAST-based
broadcast algorithms do not presently yield good perfor-
mance for large messages, as notably commonly appear in
streaming and deep learning applications.

4 DESIGNING ZERO-COPY HETEROGENEOUS
BROADCAST FOR STREAMING APPLICATIONS

As indicated in Section 1, streaming applications are typ-
ically comprised of compute nodes and a source compo-
nent that generates data in real time (live source or staged
through disk). To take advantage of the computing power
of GPUs, the data needs to be continuously broadcast to
multiple GPU computing nodes. However, state-of-the-art
approaches for the broadcast primitive typically support
only homogeneous operations, i.e., both the source and

destination need to be either in the host CPU or in GPU
memory. As a result, moving data between host and GPU
memory is needed to support heterogeneous operations.
This presents potential bottlenecks. To alleviate these bottle-
necks, we propose efficient heterogeneous broadcast designs
by taking the advantage of IB and NVIDIA GDR hardware
features, as described below.

4.1 Scatter List (SL)-based Heterogeneous Broadcast

Any data movement operation over networks is composed
of control information and the data payload. Generally, the
control information is always generated and stored in host
memory while the data payload can be in GPU memory.
To directly write/read the control information to host and
the data payload to GPU memory in one single operation,
respectively, communication libraries usually rely on the
IB SGL feature and NVIDIA GDR capabilities [19], [33], as
described in Section 2.

When performing heterogeneous broadcast operations,
the source data and control information typically both reside
in host memory. On the receiver side, data and control
information need to reside in GPU and host memory, re-
spectively. One can also perform a broadcast operation from
GPU memory to remote CPU host memory; however, this is
not commonly used in practice.

As mentioned earlier, existing approaches that exploit
the IB-MCAST feature only support a homogeneous broad-
cast scheme. Thus, additional data transfer operations are
required either before GPU-based or after host-based broad-
casts [19], [34]. To avoid these costly data transfer operations
between host and GPU memory, we present an IB scatter-
list (SL)-based design, which provides an efficient broadcast
algorithm, combining both GDR and IB-MCAST features.
Specifically, on the receiver side, when posting receive re-
quests to the IB HCA, the communication library specifies
host and GPU memory addresses for control information
and data, respectively. As shown in Figure 2, when data
arrives, the IB HCA performs a scatter operation to write
data directly to the registered GPU memory space—without
staging through host memory since the GDR feature enables
third-party devices to access GPU memory directly via the
PCIe bus. (Note that the receiver GPU memory needs to be
registered in order to allow the IB HCA direct access to it.)
To avoid the overhead of memory registration, removing it
from the critical communication path of a broadcast oper-
ation, we intercept the MPI memory allocation application
program interfaces (APIs) and transparently perform mem-
ory registrations. Further, we maintain a registration cache
to reduce registration overhead.

4

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Node	N

IB	HCA

IB	HCA

CPU

GPU

Source

IB	
Switch

GPU

CPU
Node	1

1. IB-MCAST

C
Data

C

2. IB Scatter (GDR Write)

Data

IB	HCA

GPU

CPU

Data

C

Fig. 2. Proposed SL-based Heterogeneous broadcast

4.2 Zero-copy Multicast Scheme

Generally, on IB clusters, a communication library always
registers and posts pre-allocated buffers to the HCA, i.e.,
intermediate buffers, to ensure that any unexpected net-
work packets can be successfully handled. This enables the
sender and receiver to progress asynchronously. However,
this mechanism requires additional data transfer operations
from these intermediate buffers to user-specified buffers on
the receiver side. To perform a zero-copy multicast oper-
ation, the sender must wait until the receiver has regis-
tered and posted the user-specified buffers to ensure that
IB-MCAST packets can be received successfully. Existing
zero-copy schemes either employ barrier operations, e.g.,
MPI Barrier, to synchronize between sender and its re-
ceivers, or apply a hybrid scheme for retransmitting lost
IB-MCAST packets [17].

Here, we propose a zero-copy scheme that leverages
one-sided communications [35], [36] to perform light-weight
sender-receiver synchronization, followed by the proposed
SL-based broadcast operation. The proposed scheme ap-
pears as Algorithm 1. In Algorithm 1, lines 8-15 repre-
sent the sender side. First, the sender checks whether
all receivers have posted the buffers (lines 8-10) with
mcast prepost status being a vector exposed to all receivers
for performing one-sided operations. Next, the sender mul-
ticasts the data (lines 11-15). On the receiver side (lines 16-
28), a receiver first posts the user-specified buffer to allow
its HCA to directly write data to it without explicit copy
operations (lines 16-22). Finally, the receiver notifies sender
of the completion of post-processing by using one-sided op-
eration (line 25) and waits for the IB-MCAST packets. Note
that this zero-copy scheme can be applied to heterogeneous
as well as homogeneous broadcast operations. Since the IB-
MCAST feature is based on UD transport, i.e., a transport
protocol that does not provide reliability support, reliability
must be handled via software. In this paper, we focus on
the broadcast design itself with reliability supported by
applying the low-overhead scheme proposed in [37].

5 DESIGNING STREAMING BROADCAST FOR
DEEP LEARNING

With deep learning applications requiring processing of
large datasets, it is common practice for such applications
to distribute workloads to multiple GPUs across multi-
ple nodes in clusters. Broadcast operations are employed
to handle the workload distribution and involve multiple
concurrent broadcast operations among different communi-
cation groups, e.g., MPI communicators. And a particular

Algorithm 1 Proposed zero-copy broadcast scheme
1: Definition of Variables (with respect to each process)
2: buf : the user-specified buffer to be broadcast.
3: size : length of buf in byte.
4: seqnum : latest sequence number of IB-MCAST.
5: UD MTU : Unreliable Datagram Maximum Transmission Unit
6: mcast prepost status : the latest sequence number of MCAST
7: packet is pre-posed on the broadcast receiver sides

ON THE BROADCAST SENDER SIDE:
8: while ∀ s ∈ mcast prepost status < seqnum do
9: /* Wait for broadcast receivers to update their status */

10: end while
11: bindex← 0
12: while bindex < size do
13: mcast send(buf+bindex)
14: bindex += UD MTU
15: end while

ON THE BROADCAST RECEIVER SIDE:
16: /* Prepost the user buffer to receive MCAST packets */
17: bindex← 0
18: while bindex < size do
19: post mcast pkt(buf+bindex)
20: bindex += UD MTU
21: seqnum++
22: end while
23: /* Notify the broadcast sender by using the light-weight
24: * true one-sided operation */
25: OneSided Put(&seqnum, ..., bcast sender, ...)
26: while mcast recv(buf,...) do
27: /* Wait until all MCAST packets are received */
28: end while

GPU may participate in multiple communications groups.
In an efficient distribution scheme, multiple broadcast oper-
ations are issued concurrently in different communications
groups. However, although there is a potential for overlap-
ping broadcast operations involving different communica-
tion groups, existing broadcast schemes rather apply differ-
ent algorithms based on point-to-point communications as
discussed in Section 3, and in those schemes, each broadcast
operation generally proceeds sequentially. Furthermore, we
find that scalability of existing broadcast algorithms is lim-
ited as discussed in Section 3.
5.1 Streaming Broadcast Design
As mentioned in Section 3.2, the PCIe P2P read limitation
brings significant overhead to GDR read operations, which,
in turn, can become a significant bottleneck for performing
inter-node GPU-to-GPU broadcast operations when using
GDR features. To address this issue, we propose a two-
step strategy as illustrated in Figure 3(a): (1) move the
data to host memory, and (2) leverage the high-performance
IB-MCAST-based broadcast algorithm as presented in Sec-
tion 4, where the IB-MCAST sends data in host memory
to GPU-resident receiver memory. Note that the first step
would be expensive were we to naively perform the device-
to-host (D2H) data transfer, i.e., using cudaMemcpy. To help
hide the cost of D2H copy operations, we further propose
dividing a message into multiple smaller chunks and is-
suing the associated D2H copy operations asynchronously,
i.e., via cudaMemcpyAsync. Moreover, this intermediate host
buffer is “pinned” by the GPU to achieve higher data
transfer rates. Finally, the sender broadcasts the chunks
when they are ready. In this way, these two steps work
in a (software) pipelined fashion and can be overlapped.
This avoids the P2P read limit and also leverages the high-
performance IB-MCAST capability and employs GPUDirect

5

Node	N

IB	HCA

IB	HCA

CPU

GPU

Source

IB	
Switch

GPU

CPU
Node	1

C
Data

C

Data

IB	HCA

GPU

CPU

Data

C
1. Data movement
1.2. IB Gather
1.3. IB-MCAST
2. IB Scatter (GDR Write)

DDD

(a) Overview

Broadcast	from	Node	C

Broadcast	from	Node	A

Broadcast	from	Node	B
Timeline

HCA
CPU
GPU

GPU
CPU
HCAN

od
e	
B

N
od

e	
C

GPU
CPU
HCAN

od
e	
A

:cudaMemcpyAsync :	IB	Hardware	Multicast :	cudaStreamSynchronize :	GDR	Write

(b) Design details with an example

Fig. 3. Proposed streaming broadcast on GPU clusters

features. When processing a large message as multiple data
chunks, we collectively treat them as incoming streaming
data in the broadcast kernel, with such processing herein
termed, “streaming broadcast”.

In deep learning applications, concurrent large mes-
sage broadcast operations commonly occur across differing
groups of nodes. However, since deep learning applica-
tions typically involve blocking-mode broadcast operations,
e.g., MPI Bcast, broadcast communications among differ-
ent groups of nodes do not readily occur concurrently,
though there is potential for using non-blocking broadcasts
(this approach would require application-level changes). To
achieve overlapping of broadcast operations across differing
MPI communications groups (without modifying the appli-
cations), one could implement a blocking broadcast with
multiple non-blocking point-to-point operations. However,
scalability of such an approach is limited as discussed in Sec-
tion 3. By using IB-MCAST, a single broadcast operation can
return immediately once the IB-MCAST request is posted
to the IB HCA. This allows a broadcast sender to return
and participate in the next broadcast call once the current
broadcast data is posted. This provides an opportunity for
multiple broadcast operations to proceed concurrently and
for the overall blocking broadcast to be implemented in
the proposed pipelined fashion without application-level
changes. Figure 3(b) exhibits an example with three GPU
nodes (Nodes A, B, and C) involved in broadcast operations
in three different groups. The arrow lines indicate the data
flow. Rectangles represent data chunks, where three chunks
are used for a single broadcast in the example. In each node,
we assume one auxiliary process runs on the CPU host to
facilitate communications. Note that while there could be
more nodes involved in broadcast groups, for illustrative
proposes, we show only three nodes.

We first consider the single broadcast from Node B to C.
As soon as the first chunk is copied to Host memory, the
CPU can begin continuously posting IB-MCAST requests
to HCAs, which will gather and send out the data. Within
a node, we see two levels of overlapping in a broadcast
operation on the sender side: (1) moving data from GPU
to host memory is overlapped with moving data from CPU
host memory to an HCA, and (2) moving data between GPU
and host memory and from host memory to an HCA also
overlaps with communication over IB via IB-MCAST oper-
ations. On the broadcast receiver side, an HCA leverages

the GDR feature to write incoming data directly to GPU
buffers, notably bypassing CPU memory and also HCA-
to-host and host-to-GPU PCIe paths. Therefore, the CPU is
only responsible for polling the IB completion queue (CQ) to
ensure that the IB-MCAST packets are received successfully.
In this way, the receiver side activity also overlaps with the
sender side, as depicted in Figure 3(b). Next, we consider a
multi-source broadcast scenario, where Node A performs
a broadcast to Node B while Node B is still performing
broadcast to Node C in a different MPI communications
group. In Figure 3(b), Node B can return immediately once
all IB-MCAST requests are posted to HCAs. Therefore, once
the HCA of Node B is free, that HCA can receive IB-MCAST
data from Node A while another broadcast operation (Node
B to C) occurs (concurrently). Similarly, the Node C to B
broadcast can overlap with the Node A to B broadcast.

Algorithm 2 details the proposed streaming broadcast
scheme on the sender side. The receiver side scheme
remains the same as Algorithm 1. Multiple cudaMem-
cpyAsync calls are used (lines 10, 17, and 23) to asyn-
chronously perform the data transfers between host and
GPU memory. cudaStreamSynchronize calls are used (lines
15 and 21) to ensure the completion of data transfers when
the data is required to be multicast. Specifically, the first
asynchronous data transfer (line 10) can be overlapped
with sender-receiver synchronization (lines 12–14). More-
over, subsequent asynchronous data transfers (lines 17 and
23) can be overlapped with IB-MCAST operations (line 27).
Remaining parts are the zero-copy scheme presented in
Algorithm 1.

5.2 Performance Models for the Proposed Design

The proposed design avoids the GDR read limit by stag-
ing GPU data through CPU host memory. Moreover, the
pipelined design (with a fine-tuned data chunk size) hides
the cost of GPU-to-host data transfer operations. This sug-
gests a timing performance model for the proposed design
with a single broadcast operation, as given by

TBcast MCAST Staging Pipeline =

C

BH2D
+

M

U
× (ts + to(n) +

U

BH
) .

(8)

In the multi-source broadcast scenario, suppose there are m
broadcast sources and further suppose there is a fraction of

6

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

Algorithm 2 Proposed streaming broadcast
1: Definition of Variables (with respect to each process)
2: buf: the user-specified GPU buffer to be broadcast.
3: mbuf: the pre-allocated host buffer used to perform IB-MCAST.
4: cSize: the pre-defined chunk size in byte.
5: copiedIndex: the record of the current index of copied data.
6: strm: the pre-defined CUDA stream to perform data movement
7: between Host and GPU memory.

ON THE BROADCAST SENDER SIDE:
8: mIndex← 0
9: copiedIndex← 0

10: cudaMemcpyAsync(mbuf, buf, cSize,
11: cudaMemcpyDeviceToHost,strm)
12: while ∀ s ∈ mcast prepost status < seqnum do
13: /* Wait for broadcast receivers to update their status */
14: end while
15: cudaStreamSynchronize(strm)
16: copiedindex← copiedindex + csize
17: cudaMemcpyAsync(mbuf+copiedIndex, buf+copiedIndex,
18: cSize, cudaMemcpyDeviceToHost,strm)
19: while mIndex < size do
20: if mIndex < copiedIndex then
21: cudaStreamSynchronize(strm)
22: copiedindex← copiedindex + csize
23: cudaMemcpyAsync(mbuf+copiedIndex,
24: buf+copiedIndex, cSize,
25: cudaMemcpyDeviceToHost,strm)
26: end if
27: mcast send(mbuf+mIndex)
28: mIndex += UD MTU
29: end while

ON THE BROADCAST RECEIVER SIDE:
30: Same as in Algorithm 1

OP overlap among broadcast operations, then the cost of a
multi-source broadcast scheme becomes (1−OP)×m times
the cost of the corresponding single broadcast operation.
Therefore, the timing performance model of the proposed
design for the multi-source broadcast scenario can be repre-
sented as follows:

TM−Bcast MCAST Staging Pipeline = (9)

(1−OP)×m× (
C

BH2D
+

M

U
× (ts + to(n) +

U

BH
)) .

And also in the multi-source broadcast scenario, we can
similarly determine timing performance models for other
broadcast schemes as illustrated in Section 3. Evaluation of
the models is discussed in Section 8.

6 DESIGNING TOPOLOGY-AWARE BROADCAST
FOR MULTI-GPU SYSTEMS

To maximize the benefits of GPUs, emerging GPU clus-
ter systems have dense GPU configurations, where each
node includes several GPUs connected via PCIe and/or
NVLink, and with potentially varying topologies. Although
variants of the proposed broadcast designs can be used
for such multi-GPU systems, the participation of multiple
processes per node in the inter-node communication leads
to performance degradation and scalability issues [18], [34].
HCA communications bottlenecks account for some of the
degradation, for an HCA may serve multiple GPUs. Indeed,
in such situations, an HCA may be responsible for handling
different copies of the same broadcast packet. Furthermore,
in this case, the IB HCA is limited to sequentially perform-
ing writes to GPU memory in the order of the arrival of
separate messages. Hence, broadcast performance may not

be optimized in such multi-GPU scenarios. To address this
deficiency, we explore a topology-aware broadcast mecha-
nism in multi-GPU systems.

State-of-the-art collective algorithms generally use bi-
level communication schemes. At the first level of commu-
nication, each node selects a leader process to perform the
inter-node operation. Then at the second level, the leader
process on each node performs intra-node broadcast to all
other recipients in the same physical node. These implemen-
tations can be simply extended to GPU systems. In this case,
the intra-node broadcast at the second level of communi-
cation will have the following two steps: 1) a host-based
shared memory exchange, where the data is first copied
to the shared memory region in the host memory, and 2)
each process copies the data from shared memory on the
host to its buffer in GPU memory. As shown in Figure 4(a),
this approach involves expensive data movements between
host and GPU memory. Further, this also consumes PCIe
resources between host and device, which may limit the
overall performance of streaming applications, e.g., when
a streaming application would otherwise employ PCIe links
for other communications.

To keep precious PCIe resources free for applications
and to design efficient broadcast operation for multi-GPU
systems, we have extended the SL-based design with a bi-
level approach and an intra-node topology-aware scheme as
shown in Figure 4(b). The proposed topology-aware design
needs to account for characteristics of the system, such as,
1) inter-connectivity and placement of the different GPUs in
the PCIe network and 2) placement of the HCAs and their
connectivity to the GPUs on the same node. Further, to avoid
the well-known P2P bottleneck in current architectures as
mentioned in Section 3.2, emerging multi-GPU systems may
have multiple HCAs per node, e.g., one HCA per socket.
The proposed design accounts for all of these system char-
acteristics and uses one leader process per HCA (or socket)
rather than one per node. The motivation behind this design
includes 1) avoiding the P2P bottleneck by ensuring that
GPUs and IB devices do not communicate across sockets
and 2) maximizing the benefits of the MCAST support at the
first inter-node level using the proposed SL-based design.

Once leader processes receive the data of a broadcast op-
eration on their GPUs using the SL-design, all the processes
on the same socket directly read the data from GPU memory
of the leader to their respective GPU memories in parallel
using the CUDA IPC feature, as mentioned in Section 2.2.
In order for a remote process to gain access a local GPU
memory, IPC memory handlers need to be exchanged and
opened beforehand between the pair of processes, which
is known to have significant overhead [5]. To avoid such
overhead in the critical path, in the initialization phase, each
process exposes a memory region and creates an IPC han-
dler for it. To avoid the need for an extra all-to-all exchange
of these handlers inside each group, a table is established in
a shared memory region for storing IPC memory handlers
information. Thus, processes can directly access memory
spaces of other GPU devices without additional overhead
during the performance-critical broadcast operation. It is
worth noting that the reason behind the all-to-all kind
of pattern exchange is to provide a generic platform for
designing topology-aware algorithms. For example, one can

7

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Node	N

IB	HCA

IB	HCA

CPU

GPU

Source

IB	
Switch

GPU

CPU
Node	1

1. IB-MCAST

C
Data

C

2. IB Scatter (GDR Write)

Data

IB	
HCA

GPU	0

CPU
C

GPU	1 GPU	N3. cudaMemcpy
(Host<->Device) Data

(a) Existing bi-level shared-memory-based
broadcast scheme

Node	N

IB	HCA

IB	HCA

CPU

GPU

Source

IB	
Switch

GPU

CPU
Node	1

C
Data

C

Data

IB	
HCA

GPU	0

CPU
C

GPU	1 GPU	N
Data

1. IB-MCAST

2. IB Scatter (GDR Write)

3. cudaMemcpy
(Device<->Device)

(b) Proposed IPC-based bi-level broadcast
scheme

GPU 0

Shared Memory Region

RecvBuf

CopyBuf

Sync_flag

1

GPU 1

RecvBuf

GPU N

RecvBuf

2
4 4

Host Memory

3: IPC-based copies

(c) Specific steps of the proposed IPC-based
intra-node broadcast scheme

Fig. 4. Overview of the existing and proposed broadcast schemes for multi-GPU systems

design the broadcast as a parallel read from the leader with
reads, writes, or mixed reads and writes, such as ring, K-
nomial, or other similar types of approaches for the intra-
node broadcast operation. It is also worth noting that the
proposed IPC-based intra-node design is generic and appli-
cable also to NVIDIA NVLink systems. NVLink intercon-
nect technology is expected to offer improved performance
of IPC communication (load/store operations) with higher
bandwidth for the proposed parallel “Get” operations [20].

The specific steps of the proposed design are illustrated
in Figure 4(c). Data transfer operations are performed di-
rectly between GPU and HCA memories, bypassing host
memory. Coordination and synchronization between dif-
ferent processes and their leaders are accomplished using
Sync flags in host shared memory. To maximize pipelined
overlap when using IPC schemes and asynchronicity be-
tween a leader and non-leaders, we utilize a circular chunk-
based scheme. Once the leader receives data for one chunk,
it copies the data into a circular buffer in GPU memory,
CopyBuf, then it notifies non-leaders by setting the corre-
sponding Sync flag in host memory and moves forward to
receive the next chunk from IB-MCAST group. Once the
non-leaders finish handling their respective copy opera-
tions, they update the status of the corresponding chunks
in order to notify the leader. As these copy operations are
performed in a pipelined manner and overlap with the inter-
node IB-MCAST operation, the overhead is well-hidden.

7 PERFORMANCE EVALUATION

Here, we present the performance evaluation and analysis of
the proposed broadcast designs. We implemented the pro-
posed designs in the MPI_Bcast (MPI blocking broadcast)
function on top of MVAPICH2-GDR 2.3a, which is a CUDA-
aware MPI library that leverages modern GPUDirect and
InfiniBand features.

Experiments were carried out on two GPU clusters: 1)
a Swiss National Supercomputing Centre (CSCS) cluster
that is a Cray CS-Storm GPU-based system, with each node
consisting of two 12-core Intel (Haswell) Xeon E5-2690 v3
2.6 GHz processors, 256 GB DDR4 memory, eight NVIDIA
Tesla K80 GPU cards and two FDR IB HCAs, allowing for
evaluation of the intra-node designs in conjunction with the
inter-node designs. We were allowed to experiment on the
CSCS system with up to 88 GPUs across 11 nodes. 2) RI2
cluster at The Ohio State University. The system comprises
20 nodes connected via Mellanox SB7790 and SB7800 Infini-
Band switches, each node equipped with two 14-core Intel
(Broadwell) Xeon E5-2680 v4 2.4 GHz processors, 128 GB

DDR3 Memory, one NVIDIA Tesla K80 GPU card, and one
single port InfiniBand EDR HCA. For a fair comparison,
we used only one GPU per node to stress the inter-node
communication on the RI2 cluster, and 8 GPUs per node
to stress a mix of inter- and intra-node communication on
CSCS cluster.

We compared the performance of the proposed designs,
labeled as Zcpy-MCAST-GDR-Pipeline and TA-Zcpy-MCAST-
GDR-Pipeline, with the broadcast designs as discussed in
Section 3.1, labeled as Ring-GDR-Pipeline, Knomial-GDR, and
our previous work MCAST-GDR [30] and MCAST-GDR-
Pipeline [31]. (We use this nomenclature for the remainder
of the paper.) As discussed in Section 3, there are multiple
variants of ring- and K-nomial-based algorithms for GPU-
based broadcast operations. We evaluated experimentally
all such variants and present the best-performing one.

7.1 Micro-Benchmark Level Evaluation
We first present a micro-benchmark level evaluation using
the OSU Micro-Benchmark (OMB) suite [6]. We utilized the
osu bcast benchmark to evaluate the performance of a single
broadcast call. We also developed modified benchmarks
that allow for examining the performance of heterogeneous
and multi-source broadcast operations, respectively. Our
experimental results are averaged over 5,000 iterations.
7.1.1 Single-source Heterogeneous Broadcast
In order to simulate heterogeneous broadcast operations, we
modified the current OMB suite to enable the heterogeneous
configuration where the root process allocates source data in
host memory with other processes expecting to receive data
in GPU memory, and vice versa. While both host-to-GPU
and GPU-to-host broadcast scenarios were examined for in-
creased understanding, we note that GPU-to-host broadcast
operations are not commonly used in applications.

For the broadcast operations of large messages, the pro-
posed zero-copy and streaming-based transfer significantly
improve the overall performance. In pure inter-node broad-
cast scenarios, as can be seen in Figures 5(a) and 5(b),
the proposed design Zcpy-MCAST-GDR-Pipeline yields up
to 51%, 82%, 88%, and 56% lower latency than the Knomial-
GDR, Ring-GDR-Pipeline, MCAST-GDR, and MCAST-GDR-
Pipeline designs, respectively. However, the proposed zero-
copy scheme has extra synchronization overhead as de-
scribed in Section 4.2; this overhead is significant for small
messages, as can be observed in Figures 5(a) and 5(b). In the
mix of inter- and intra-node broadcast operation, we com-
pared the proposed topology-aware IPC-based design (TA-
Zcpy-MCAST-GDR-Pipeline) to the existing shared memory-

8

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

1

10

100

1000

10000

100000

1 8 64
512 4K

32K
256K 2M

16M
128M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR
MCAST-GDR
MCAST-GDR-Pipeline

(a) Host-to-GPU Broadcast

1

10

100

1000

10000

100000

1000000

1 8 64
512 4K

32K
256K 2M

16M
128M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR-Pipeline
MCAST-GDR
MCAST-GDR-Pipeline

(b) GPU-to-Host Broadcast

1

10

100

1000

10000

100000

1000000

1 8 64
512 4K

32K
256K 2M

16M
128M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR-Pipeline
MCAST-GDR
MCAST-GDR-Pipeline

(c) GPU-to-GPU Broadcast

Fig. 5. Latency comparison of single-source broadcast scenarios across 16 GPU nodes on RI2 cluster

1

100

10000

1000000

1 8 64 51
2 4K 32
K

25
6K 2M 16
M

12
8M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
SHMEM-Zcpy-MCAST-GDR-Pipeline
TA-Zcpy-MCAST-GDR-Pipeline

(a) Host-to-GPU Broadcast

1

100

10000

1000000

1 8 64 51
2 4K 32
K

25
6K 2M 16
M

12
8M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
SHMEM-Zcpy-MCAST-GDR-Pipeline
TA-Zcpy-MCAST-GDR-Pipeline

(b) GPU-to-Host Broadcast

1

10

100

1000

10000

100000

1000000

1 8 64 51
2 4K 32
K

25
6K 2M 16
M

12
8M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
SHMEM-Zcpy-MCAST-GDR-Pipeline
TA-Zcpy-MCAST-GDR-Pipeline

(c) GPU-to-GPU Broadcast

Fig. 6. Latency comparison of single-source broadcast across 88 GPUs on GPU-dense CSCS cluster

based intra-node broadcast with the proposed MCAST
solution (SHMEM-Zcpy-MCAST-GDR-Pipeline), as well as
the flat K-nomial- and Ring-based designs. As shown in
Figures 6(a) and 6(b), the proposed TA-Zcpy-MCAST-GDR-
Pipeline design yields up to 44%, 63%, and 18% lower latency
than the Knomial-GDR, Ring-GDR-Pipeline, and SHMEM-
Zcpy-MCAST-GDR-Pipeline schemes, respectively, for large
messages. Existing K-nomial- and Ring-based schemes take
advantage of the advanced designs using point-to-point
primitives in MVAPICH2-GDR to yield low latency for
small messages [33]. However, these approaches are unde-
sirable for streaming applications since they consume PCIe
resources between a host and GPUs, as discussed further
below in Section 7.2.
7.1.2 Single-source GPU-based Broadcast
For evaluating single-source (root) MPI Bcast operations,
we used the OMB osu bcast test to compare the performance
of the proposed design with existing designs. The results for
a single broadcast scenario across 16 GPU nodes is shown
in Figure 5(c); the proposed design shows significant perfor-
mance improvement. One can observe up to 86%, 79%, 88%,
and 40% reduction in latency with the proposed design com-
pared to Knomial-GDR, Ring-GDR-Pipeline, MCAST-GDR,
and MCAST-GDR-Pipeline, respectively, for message sizes
ranging from 4 KB to 128 MB, which encompasses typical
message sizes used at large scale in DL frameworks as
illustrated in Figure 1(a). In this range of sizes, scalability
is an issue for the Knomial-GDR and Ring-GDR-Pipeline
cases, and the advanced IB-MCAST designs (MCAST-GDR-
Pipeline and Zcpy-MCAST-GDR-Pipeline) outperform those
cases. The proposed design with streaming and pipelined
features avoids the P2P read limitation; this mainly why it
outperforms the existing IB-MCAST designs for messages
larger than 512 KB. Similarly, in a GPU-dense system, we
observe up to 48%, 64%, and 16% reduction in latency of
the proposed design compared to Knomial-GDR, Ring-GDR-
Pipeline, and SHMEM-MCAST-GDR-Pipeline, respectively,

for message sizes ranging from 4 KB to 128 MB, as shown in
Figure 6(c). Here, we can see the proposed CUDA IPC-based
intra-node broadcast brings significantly overhead for small
messages.

Next, we examined scalability of the broadcast designs.
As shown in Figure 7, we can see the latency of the Ring-
GDR-Pipeline case growing linearly with increasing numbers
of GPU nodes, though this case does have the lowest latency
found at the small scale. As expected from our model
presented in Section 3.2, the Knomial-GDR case is a near log-
arithmic. Finally, the proposed design (Zcpy-MCAST-GDR-
Pipeline) employs IB-MCAST and exhibits stable latency
independent of the number of GPU nodes.
7.1.3 Multi-Source GPU-based Broadcast
To explore multi-source broadcast scenarios, we present the
most commonly used all-to-all (or an all source) broad-
cast variant in Figure 8. Essentially, each rank involved in
the communication calls MPI_Bcast with itself being the
source of the broadcast. This modified benchmark models
the underlying communications kernel of deep learning
frameworks and is discussed subsequently in Section 7.3.
Figure 8 depicts performance improvements with up to
87% and 78% reduced latency of the proposed design over
Knomial-GDR and Ring-GDR-Pipeline approaches, respec-
tively. Like in the single-source broadcast scenario, Knomial-
GDR and Ring-GDR-Pipeline schemes suffer from the P2P
read limitation scalability issue.

For the all-to-all broadcast scenario, the number of
broadcast sources doubles commensurate with doubling the
number of GPU nodes. Therefore, the best-case scenario is
that latency increases linearly with increased network scale.
In Figure 9, we observe the proposed design having near
linear latency growth with increasing scale, outperforming
the existing broadcast schemes (beginning at four nodes).
7.2 Evaluating Streaming Workloads
We developed a synthetic streaming benchmark to mimic
the behavior of streaming applications. In the synthetic

9

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

0

500

1000

1500

2000

2 4 8 16

La
te

nc
y

(μ
s)

Scale (Number of GPU nodes)

Single Bcast-2MB Message
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR-Pipeline

Fig. 7. Scalability analysis for single-source
broadcast

1

10

100

1000

10000

100000

1000000

10000000

1 8 64 51
2 4K 32
K

25
6K 2M 16
M

12
8M

La
te

nc
y

(μ
s)

Message Size (Bytes)

Latency vs. Message Size
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR-Pipeline

Fig. 8. Performance comparison for all-to-all
broadcast on 16 GPUs

0

10000

20000

30000

40000

50000

2 4 8 16

La
te

nc
y

(μ
s)

Scale (Number of GPU nodes)

All-to-all Bcast-2MB Message
Knomial-GDR
Ring-GDR-Pipeline
Zcpy-MCAST-GDR-Pipeline

Fig. 9. Scalability analysis of All-to-all Broadcast

0

2

4

6

8

10

Peak Streaming Peak Streaming Peak Streaming

4 GPU Nodes 8 GPUs Nodes 16 GPU Nodes

Th
ro

ug
hp

ut
 (G

B/
s)

Throughput v.s. Number of Bcast Receivers
Knomial-GDR
Ring-GDR-Pipeline
TA-Zcpy-MCAST-GDR-Pipeline

Fig. 10. Performance comparison of the synthetic streaming benchmark
across up to 16 GPU nodes

streaming benchmark, using cudaMemcpyAsync we kept in-
jecting background data traffic from host to GPU memory
for the broadcast source, and data from GPU to host mem-
ory for the broadcast receivers. Meanwhile, a window of
back-to-back MPI_Bcast operations is performed. This syn-
thetic streaming benchmark simulates competition for PCIe
resources, which typifies streaming applications. Here, we
compared the proposed solution (TA-Zcpy-MCAST-GDR-
Pipeline) to Knomial-GDR and Ring-GDR-Pipeline schemes.
Towards estimating the impact of the various schemes for
streaming applications, we measured throughput of the
benchmark on RI2 and CSCS systems.

To observe the tolerance of background PCIe traffic in
these broadcast schemes, we present the ‘Peak‘ throughput
a scheme can achieve without background streaming traffic
and the throughput when ‘Streaming‘ begins. As shown
in Figure 7.2, the proposed design (IPC TA-Zcpy-MCAST-
GDR-Pipeline) achieves stable throughput, which is around
6 GB/s, independent of the number of GPU nodes, which is
essential for streaming processes. Although the Ring-based
design achieves the highest peak throughput (near 9 GB/s)
in the small scale, Ring- and K-nomial-based designs do
not scale well and have significantly negative impact on
streaming traffic.

These results are consistent with the desired objective of
increasing the efficiency of PCIe resource utilization in im-
plementing broadcast operations towards maximizing the
availability of such resources for application use.

Next, we conducted the same experiments on the GPU-
dense CSCS system. As shown in Figure 7.2, the proposed
designs provide significantly higher throughput than K-
nomial- and Ring-based schemes. Nevertheless, there is un-
avoidable PCIe-level contention between background traffic
and the proposed IPC-based intra-node broadcast opera-
tions, which involve reading data from the same GPU.
It is worth noting that such contention may not be exist

0

1

2

3

4

5

Pe
ak

St
re

am
in

g

Pe
ak

St
re

am
in

g

Pe
ak

St
re

am
in

g

Pe
ak

St
re

am
in

g

11 GPUs 22 GPUs 44 GPUs 88 GPUs

Th
ro

ug
hp

ut
 (G

B/
s)

Throughput v.s. Number of Bcast Receivers
Knomial-GDR Ring-GDR-Pipeline TA-Zcpy-MCAST-GDR-Pipeline

Fig. 11. Performance comparison of the synthetic streaming benchmark
on a GPU-dense cluster with up to 88 GPUs across 11 nodes

in NVLink-enabled systems, which employ direct GPU-
to-GPU NVLink connections [20]. Therefore, the proposed
designs utilize IPC-based device-to-device data transfer op-
erations, freeing host-to-device/device-to-host PCIe chan-
nels, availing such data paths for applications. Collectively,
the results suggest the proposed designs can maximize
MPI broadcast throughput and reduce processing time for
streaming applications.

7.3 Evaluating Deep Learning Workloads
To perform an application-level evaluation we incorporate
what we learned empirically from the benchmark-level
evaluation of the previous section. Here, we compare the
proposed streaming broadcast design to the Ring-GDR-
Pipeline and Knomial-GDR approaches. From Section 7.1, we
know that the proposed IB-MCAST-based design provides
significant performance improvement for messages larger
than 128 KB and that the existing MCAST-GDR design
performs well for 4 to 128 KB messages since those sizes
do not encounter the P2P read limit. Thus, we have used
the existing IB-MCAST-based MCAST-GDR for messages
up to 128 KB and have applied the proposed design TA-
Zcpy-MCAST-GDR-Pipeline for messages beyond this in the
application level evaluation.

The Microsoft Cognitive Toolkit (CNTK) is a recently
introduced and widely-used DL toolkit [12]. Here, we focus
on CNTK data parallel stochastic gradient descent (SGD)
training that utilizes an all-to-all broadcast pattern during
its gradient aggregation phase. For our evaluation we have
utilized an optimized version of the CNTK code [13]. The
experiments were conducted on the RI2 cluster to perform
image classification training using images larger than 32 GB
from the ImageNet dataset [14].
7.3.1 AlexNet
One of the most popular and heavily cited DL networks is
the AlexNet network [38]. Figure 12 highlights a compar-

10

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

ison of K-nomial-GDR, Ring-GDR-Pipeline, and TA-Zcpy-
MCAST-GDR-Pipeline designs for the average training time
in one epoch. We present results utilizing 8- and 16-GPU
data-parallel training cases with batch size 128. This cor-
responds to using maximum buffer sizes of approximately
18 and 9 MB in the 8- and 16-GPU cases, respectively,
for broadcast operations. The broadcast primitive is called
throughout the training process with varying message sizes
ranging from 48 bytes to around 18 MB. It is encouraging
to note that while the broadcast time is just part of the
gradient aggregation process as indicated in Figure 1(a),
we have been able to reduce the overall training time
by 24% and 15% using the proposed streaming-based IB-
MCAST design compared to K-nomial-GDR and Ring-GDR-
Pipeline designs, respectively, over 16 GPUs, notably with
no application-level code changes.
7.3.2 VGG
VGG is another important DL network that utilizes a larger
model size, i.e., deeper networks [39]. For example, the
size of the communication buffer is up to about 200 MB
for two processes across two GPUs. In these experiments,
due to the memory limitation of GPU, the batch size used
is 32, which results in maximum buffer sizes of about
50 and 25 MB with 8 and 16 GPU nodes, respectively.
Figure 12 compares training performance for both 8 and
16 GPUs using Knomial-GDR, Ring-GDR-Pipeline, and TA-
Zcpy-MCAST-GDR-Pipeline designs. The proposed design
(TA-Zcpy-MCAST-GDR-Pipeline) reduces by 16% and 7% the
overall training time compared to K-nomial-GDR and Ring-
GDR-Pipeline designs, respectively, on 16 GPUs. Moreover,
we observe performance improvements with increasing
scale. This indicates that further benefits may be expected
from the proposed design for GPU clusters larger than those
to which we had access.
7.3.3 ResNet-50
Residual network (ResNet) is a super-deep neural network
for residual learning [40]. In employing super-deep layers,
the size of data exchanged via MPI is small compared to
that in AlexNet and VGG networks. In our experiments,
the batch size is set to 32, and it results in using up to
about 1.1 MB and 578 KB broadcast buffers in the 8- and
16-GPU cases, respectively. Furthermore, the majority of
message sizes for broadcast operations are in the range 4 to
64 KB. Nothwithstanding that such sizes do not fully take
advantage of the proposed pipelined MCAST design, the
proposed design still reduces by 5% and 18% the training
time against K-nomial-GDR and Ring-GDR-Pipeline de-
signs, respectively, on 16 GPUs, as shown in Figure 12. With
increasing scale we anticipate further performance benefits
of the proposed MCAST design.

8 MODEL VALIDATION AND PREDICTION

In this section, based on the performance results presented
in Section 7, we evaluate the proposed models of sections
3 and 5. We also predict broadcast performance in multi-
source broadcast scenarios on large-scale GPU systems.

For experiments on the RI2 cluster, we measured the
required parameters (Table 1) for the proposed models,
finding C = 512 KB, U = 4 KB, BH ≈ 100 Gbps,
and BH2D ≈ 8 Gbps. Note that ts is negligibly small

0

0.5

1

1.5

8 16 8 16 8 16

AlexNet VGG ResNet-50

Sp
ee

du
p

Scale (Number of GPU nodes)

CA-CNTK - Image Classification
Knomial-GDR Ring-GDR-Pipeling Zcpy-MCAST-GDR-Pipeline

Fig. 12. Speedup of the proposed designs compared to existing
schemes for DL networks across 16 GPU nodes

and can be ignored without loss of generality. Since the
overhead, to(n), of the IB-MCAST operation itself has not
been thoroughly studied in the literature, we developed
a model with the reasonable assumption that the number
of nodes involved impacts IB-MCAST overhead. Based on
experimental results, we used least squares-based curve
fitting to approximate it as a logarithmic function.

Our approximation shows the overhead of IB-MCAST
can be formulated as follows:

to(n) ≈
1

a
× ln(n) , 15 ≤ a ≤ 20 (10)

As given in Equation 10, compared to the cost of ring-based
algorithms, which is approximately O(n), we readily see
that IB-MCAST-based schemes, i.e., Equations 7, 8, and 9,
have significantly lower communication cost for large-scale
clusters. For K-nomial-based algorithms, the communica-
tion cost is mainly dominated by dlogk ne, which can be
transformed to d 1

ln(k) × ln(n)e. This means that K-nomial-
based algorithms may only have theoretically lower over-
head compared to IB-MCAST-based schemes for thousands
to millions of GPU nodes, i.e., when ln(k) > a. In prac-
tice, however, K-nomial-based schemes are implemented
with multiple point-to-point operations, which cannot be is-
sued simultaneously as the theoretical models expect when
k = n. In practice, on typically sized GPU-enabled HPC
systems [41], then, IB-MCAST-based schemes are expected
to have less overhead than K-nomial-based schemes.

For the evaluation, we have selected a 2 MB message
size, which is the most commonly used size for broadcast
operations in our application-level evaluation with CNTK
as presented in Section 7.3. First, we can calculate the
fractional overlap (OP) in a multi-source broadcast scenario
based on the latencies of same-sized single- and multi-
source broadcast operations (TSingle Bcast and TMulti Bcast,
respectively) and on the number of broadcast sources (m).
This can be represented as follows:

OP =
m ∗ TSingle Bcast − TMulti Bcast

m ∗ TSingle Bcast
(11)

Second, based on results of Section 7, we can determine
that the fractional overlaps (as percentages) in the proposed
design for 2 MB messages is 4%, 12%, 13%, and 20% for 2,
4, 8, and 16 GPU nodes, respectively. Similarly, in the multi-
source broadcast scenario, we can measure the overlap for
K-nomial-based and ring-based schemes. We discovered

11

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

500

5000

50000

2 4 8 16

La
te
nc
y	
(μ
s)

Number	of	Broadcast	Sources

Model	Validation	-2MB	Message
K-nomial-based:	Model
K-nomial-based:	Experiment
Ring-based:	Model
Ring-based:	Experiment
MCAST-GDR-Opt:	Model
MCAST-GDR-Opt:	Experiment

Fig. 13. Model validation for multi-source broadcast on GPU clusters

0.001

0.1

10

1000

100000

2 4 8 16 32 64 128 256 512 1024 2048

La
te
nc
y(
s)

Number	of	Broadcast	Sources

Model	Prediction-2MB	Message

K-nomial-based:	Model-based	Estimation

Ring-based:	Model-based	Estimation

MCAST-GDR-Opt:	Model-based	Estimation

Fig. 14. Performance prediction of multi-source broadcast for large-scale
GPU clusters

that K-nomial-based schemes have nearly no overlap and
that a pipelined ring-based scheme can achieve about 50%
overlap with 16 broadcast sources. However, ring-based
schemes, with their scalability deficiencies, have lower per-
formance compared to the proposed schemes. It is worth
noting that since K-nomial-based and ring-based schemes
are implemented via multiple non-blocking point-to-point
communication patterns, i.e., like MPI Isend/MPI Irecv, in
the MVAPICH2 library, there is a certain amount of overlap
between these calls within a single-source broadcast. We
account for this when validating the models and making
performance predictions by including a 20% overlap in the
single-source broadcast models of Section 3.

Next, we can enter these parameters into our models as
shown in Section 3 to evaluate the models. Figure 13 com-
pares the model-based performance estimation to experi-
mental results as reported in the previous section. Theoreti-
cal and experimental performance being within 10% of each
other validates the accuracy of the proposed performance
model. Finally, using our performance estimation models,
we can predict the performance of the various designs on a
larger GPU cluster. To simplify predictions, we assume all
schemes gain a 5% additional overlap with each doubling of
the number of broadcast sources. As shown in Figure 14, the
proposed scheme has the lowest latency, which is due to it
exploiting the highly scalable IB-MCAST feature. Although
ring-based schemes achieve the greatest level of overlap,
the high latency of inter-node data transfers dominates
performance.

9 RELATED WORK

This section discusses existing studies that exploit hardware
and software features of InfiniBand HCAs and GPUs for
communications in GPU clusters.

Solely host-based MPI designs for exploiting IB-MCAST
appear in [18], [34]. These studies were first to highlight the

potential of using IB-MCAST in designing efficient broad-
cast primitives. Using simulators, Zhou et al. [16] proposed
a cyclic multicast scheme to improve the performance of
multicast operations in fat-tree-based IB networks. Hoefler
et al. [17] presented a host-based broadcast implementation
that utilizes hardware multicast features with a ring-based
algorithm and allows for a near constant-time complexity
and included but a micro-benchmark level evaluation.

Venkatesh et al. [19] present homogeneous support for
utilizing the IB-MCAST feature in tandem with GPUDirect
RDMA. Potluri et al. [5] leveraged CUDA IPC to improve
the programmability as well as the performance of intra-
node communication on multi-GPU systems. For such sys-
tems, various studies have been published that include
optimization of MPI runtimes [5], [42], benchmarks [4], [43],
[44], and applications [1], [3]. Sourouri et al. [42] proposed
overlapping computation and communication through us-
ing a combination of multiple CUDA streams and OpenMP
threads. Our earlier work [30] provides preliminary support
of IB-MCAST-based designs for heterogeneous broadcast
as presented in sections 4.1 and 6 on multi-GPU systems.
In [31], the focus was on GPU-resident data for deep learn-
ing workloads as explained in Section 5. In the present
paper, we further discuss improved broadcast schemes that
provide efficient performance for various combinations of
communication patterns.

10 CONCLUDING REMARKS

Deep learning applications typically employ broadcast op-
erations with large messages for distributing workloads
to GPU computing sites in HPC clusters. In this paper,
through an analytical modeling approach, we observed mul-
tiple fundamental bottlenecks in existing broadcast schemes
for transferring from multiple sources medium and large
messages among GPUs in an InfiniBand network. Based on
this analysis and by exploiting advanced features of mod-
ern HPC cluster components, such as InfiniBand hardware
multicast and GPUDirect RDMA, we proposed an efficient
and scalable GPU-based multi-source streaming broadcast
design. Through a detailed performance evaluation and
analysis of the design and models on a real-world GPU-
enabled InfiniBand cluster, using streaming benchmarks on
88 GPUs across 11 nodes we observed stable and higher
throughput from the proposed designs as well as up to
64% reduction in latency compared to existing broadcast
schemes. Furthermore, a performance evaluation of the
modified CUDA-aware deep learning toolkit based on Mi-
crosoft CNTK across 16 GPU nodes found the proposed
design yields 15%, 7%, and 18% reduction in training time
compared to the existing ring-based pipeling scheme for
AlexNet, VGG and ResNet networks, respectively, without
loss of accuracy and notably with no application changes.

Future plans include extending the proposed designs
to other broadcast-based collective operations, such as all-
reduce, all-gather, and all-to-all, as well as evaluating the
proposed designs with various streaming and deep learning
applications in upcoming large-scale GPU-dense clusters.

ACKNOWLEDGMENTS

This material is based upon work supported by, or in part
by, the United States Department of Defense (DOD) High

12

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

Performance Computing Modernization Program (HPCMP)
User Productivity Enhancement and Technology Transfer
(PETTT) contract #GS04T09DBC0017. Any opinions, find-
ings, and conclusions or recommendations expressed herein
are those of the authors and do not necessarily reflect the
views of the DOD HPCMP or the employer of the author.

We thank Drs. Sadaf Alam and Carlos Osuna for pro-
viding access to the Swiss National Supercomputing Centre
(CSCS) testbed.

REFERENCES

[1] A. Vilches, A. Navarro, R. Asenjo, F. Corbera, R. Gran, and M. J.
M. J. Garzarán, “Mapping Streaming Applications on Commodity
Multi-CPU and GPU On-Chip Processors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 4, pp. 1099–1115, April
2016.

[2] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep
Learning on Modern GPU Clusters,” in Proceedings of the 22Nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’17. ACM, 2017, pp. 193–205.

[3] H. T. Meng and J. M. Jin, “Acceleration of the Dual-Field Domain
Decomposition Algorithm Using MPI-CUDA on Large-Scale Com-
puting Systems,” IEEE Transactions on Antennas and Propagation,
vol. 62, no. 9, pp. 4706–4715, Sept 2014.

[4] G. Jo, J. Nah, J. Lee, J. Kim, and J. Lee, “Accelerating LINPACK
with MPI-OpenCL on Clusters of Multi-GPU Nodes,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 26, no. 7, pp. 1814–
1825, July 2015.

[5] S. Potluri, H. Wang, D. Bureddy, A. K. Singh, C. Rosales, and D. K.
Panda, “Optimizing MPI Communication on Multi-GPU Systems
Using CUDA Inter-Process Communication,” in Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW),
2012 IEEE 26th International, May 2012, pp. 1848–1857.

[6] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda,
“OMB-GPU: A Micro-benchmark Suite for Evaluating MPI Li-
braries on GPU Clusters,” in Proceedings of the 19th European Confer-
ence on Recent Advances in the Message Passing Interface (EuroMPI),
2012, pp. 110–120.

[7] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran,
“Streamline: A Scheduling Heuristic for Streaming Applications
on the Grid,” in Electronic Imaging 2006. International Society for
Optics and Photonics, 2006, pp. 607 107–607 107.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture
for Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[9] NVIDIA, “Caffe: a fast open framework for deep learning,”
Accessed: July 25, 2018. [Online]. Available: https://github.com/
NVIDIA/caffe

[10] Facebook, “A New Lightweight, Modular, and Scalable Deep
Learning Framework,” Accessed: July 25, 2018. [Online].
Available: https://caffe2.ai/

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado et al., “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems,” Accessed: July 25, 2018. [Online].
Available: http://tensorflow.org/

[12] Microsoft, “The Microsoft Cognitive Toolkit,” Accessed: July 25,
2018. [Online]. Available: http://www.cntk.ai/

[13] D. S. Banerjee, K. Hamidouche, and D. K. Panda, “Re-Designing
CNTK Deep Learning Framework on Modern GPU Enabled Clus-
ters,” in 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Dec 2016, pp. 144–151.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[15] “InfiniBand Trade Association,” Accessed: July 25, 2018. [Online].
Available: http://www.infinibandta.org

[16] J. Zhou, X.-Y. Lin, and Y.-C. Chung, “Hardware Supported Mul-
ticast in Fat-tree-based InfiniBand Networks,” J. Supercomput.,
vol. 40, no. 3, pp. 333–352, Jun. 2007.

[17] T. Hoefler, C. Siebert, and W. Rehm, “A Practically Constant-time
MPI Broadcast Algorithm for Large-scale InfiniBand Clusters with
Multicast,” in Proceedings of the 21st IEEE International Parallel &
Distributed Processing Symposium (CAC’07 Workshop), Mar. 2007, p.
232.

[18] A. R. Mamidala, L. Chai, H.-W. Jin, and D. K. Panda, “Efficient
SMP-aware MPI-level Broadcast over InfiniBand’s Hardware Mul-
ticast,” in Proceedings 20th IEEE International Parallel Distributed
Processing Symposium, April 2006, p. 8.

[19] A. Venkatesh, H. Subramoni, K. Hamidouche, and D. K. Panda,
“A High Performance Broadcast Design with Hardware Multicast
and GPUDirect RDMA for Streaming Applications on Infiniband
Clusters,” in 2014 21st International Conference on High Performance
Computing (HiPC), Dec 2014, pp. 1–10.

[20] “NVIDIA NVLINK HIGH-SPEED INTERCONNECT,” Accessed:
July 25, 2018. [Online]. Available: http://www.nvidia.com/
object/nvlink.html

[21] “NVIDIA GPUDirect,” Accessed: July 25, 2018. [Online].
Available: https://developer.nvidia.com/gpudirect

[22] D. M. Wadsworth and Z. Chen, “Performance of MPI Broadcast
Algorithms,” in 2008 IEEE International Symposium on Parallel and
Distributed Processing, April 2008, pp. 1–7.

[23] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance Analysis of MPI Collective Oper-
ations,” in 19th IEEE International Parallel and Distributed Processing
Symposium, April 2005, p. 8.

[24] K. Hasanov, J.-N. Quintin, and A. Lastovetsky, “High-level
topology-oblivious optimization of MPI broadcast algorithms on
extreme-scale platforms,” in European Conference on Parallel Process-
ing. Springer, 2014, pp. 412–424.

[25] T. Chiba, T. Endo, and S. Matsuoka, “High-Performance MPI
Broadcast Algorithm for Grid Environments Utilizing Multi-lane
NICs,” in Seventh IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid ’07), May 2007, pp. 487–494.

[26] H. Zhou, V. Marjanovic, C. Niethammer, and J. Gracia, “A
Bandwidth-Saving Optimization for MPI Broadcast Collective Op-
eration,” in 2015 44th International Conference on Parallel Processing
Workshops, Sept 2015, pp. 111–118.

[27] NVIDIA, “Optimized Primitives for Collective Multi-GPU
Communication,” Accessed: July 25, 2018. [Online]. Available:
https://github.com/NVIDIA/nccl

[28] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda,
“Efficient Large Message Broadcast Using NCCL and CUDA-
Aware MPI for Deep Learning,” in Proceedings of the 23rd European
MPI Users’ Group Meeting, ser. EuroMPI 2016. New York, NY,
USA: ACM, 2016, pp. 15–22.

[29] A. A. Awan, C. Chu, H. Subramoni, and D. K. Panda, “Optimized
Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand
Clusters: MPI or NCCL?” arXiv preprint arXiv:1707/09414, vol.
abs/1707.09414, 2017.

[30] C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton,
and D. K. Panda, “Designing High Performance Heterogeneous
Broadcast for Streaming Applications on GPU Clusters,” in 2016
28th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Oct 2016, pp. 59–66.

[31] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton,
and D. K. Panda, “Efficient and Scalable Multi-Source Streaming
Broadcast on GPU Clusters for Deep Learning,” in 46th Interna-
tional Conference on Parallel Processing (ICPP-2017), Aug 2017.

[32] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and
D. Panda, “Efficient Inter-node MPI Communication Using
GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs,”
in Parallel Processing (ICPP), 2013 42nd International Conference on,
Oct 2013, pp. 80–89.

[33] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and
D. K. Panda, “Designing Efficient Small Message Transfer Mech-
anism for Inter-node MPI Communication on InfiniBand GPU
Clusters,” in 2014 21st International Conference on High Performance
Computing (HiPC), Dec 2014, pp. 1–10.

[34] J. Liu, A. R. Mamidala, and D. K. Panda, “Fast and Scalable MPI-
level Broadcast using InfiniBand’s Hardware Multicast Support,”
in Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, April 2004, p. 10.

[35] M. Li, S. Potluri, K. Hamidouche, J. Jose, and D. K. Panda, “Effi-
cient and Truly Passive MPI-3 RMA Using InfiniBand Atomics,”
in Proceedings of the 20th European MPI Users’ Group Meeting, ser.
EuroMPI ’13. New York, NY, USA: ACM, 2013, pp. 91–96.

13

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/NVIDIA/caffe
https://github.com/NVIDIA/caffe
https://caffe2.ai/
http://tensorflow.org/
http://www.cntk.ai/
http://www.infinibandta.org
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
https://developer.nvidia.com/gpudirect
https://github.com/NVIDIA/nccl

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2867222, IEEE
Transactions on Parallel and Distributed Systems

[36] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling Highly-
Scalable Remote Memory Access Programming with MPI-3 One
Sided,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. ACM, 11 2013,
pp. 53:1–53:12.

[37] C. H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton,
and D. K. Panda, “Efficient Reliability Support for Hardware
Multicast-Based Broadcast in GPU-enabled Streaming Applica-
tions,” in 2016 First International Workshop on Communication Op-
timizations in HPC (COMHPC), Nov 2016, pp. 29–38.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classi-
fication with Deep Convolutional Neural Networks,” in Advances
in neural information processing systems, 2012, pp. 1097–1105.

[39] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 770–778.

[41] “Top 500 Supercomputer sites,” Accessed: July 25, 2018. [Online].
Available: http://www.top500.org/

[42] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai, “Effective
Multi-GPU Communication using Multiple CUDA Streams and
Threads,” in 2014 20th IEEE International Conference on Parallel and
Distributed Systems (ICPADS), Dec 2014, pp. 981–986.

[43] I. B. Peng, S. Markidis, E. Laure, D. Holmes, and M. Bull, “A Data
Streaming Model in MPI,” in Proceedings of the 3rd Workshop on
Exascale MPI, ser. ExaMPI ’15. New York, NY, USA: ACM, 2015,
pp. 2:1–2:10.

[44] S. Kamburugamuve, M. Pathirage, S. Ekanayake, and G. C. Fox,
“High Performance Processing of Streaming Data,” in 2015 IEEE
22nd International Conference on High Performance Computing Work-
shops (HiPCW), Dec 2015, p. 58.

Ching-Hsiang Chu received B.S. and M.S. de-
grees in Computer Science and Information En-
gineering from National Changhua University of
Education, Taiwan in 2010 and National Cen-
tral University, Taiwan in 2012, respectively. He
is currently working towards a Ph.D. degree
in Computer Science and Engineering at The
Ohio State University, Columbus, Ohio. His re-
search interests include high-performance com-
puting and networking, wireless networks, and
cloud computing. More details are available at

http://web.cse.ohio-state.edu/∼chu.368.
Xiaoyi Lu received a Ph.D. degree in Com-
puter Science from the Institute of Computing
Technology, Chinese Academy of Sciences, Bei-
jing, China. He is a research scientist in the
Department of Computer Science and Engi-
neering, Ohio State University, USA. His cur-
rent research interests include high perfor-
mance interconnects and protocols, Big Data,
Hadoop/Spark/Memcached Ecosystem, Parallel
Computing Models (MPI/PGAS), Virtualization,
Cloud Computing, and Deep Learning. He is cur-

rently leading the design and development for the High-Performance Big
Data (HiBD) project (http://hibd.cse.ohio-state.edu). The HiBD packages
are currently being used by more than 275 organizations in 34 countries.
More than 25,150 downloads of these libraries have taken place. He
has published more than 80 papers in major journals and international
conferences related to these research areas and is actively involved in
various professional activities in academic journals and conferences.
He is a member of the IEEE and ACM. More details about Dr. Lu are
available at http://web.cse.ohio-state.edu/∼lu.932.

Ammar A. Awan received his B.S. and M.S.
degrees in Computer Science and Engineering
from National University of Science and Technol-
ogy, Pakistan and Kyung Hee University, South
Korea, respectively. Currently, Ammar is working
towards his Ph.D. degree in Computer Science
and Engineering at The Ohio State University.
His current research focus lies at the intersec-
tion of High Performance Computing libraries
and Deep Learning frameworks. He previously
worked on a Java-based Message Passing In-

terface (MPI) and nested parallelism with OpenMP and MPI for scientific

applications. More details are available at http://web.cse.ohio-state.edu/
∼awan.10.

Hari Subramoni is a research scientist in the
Department of Computer Science and Engineer-
ing at the Ohio State University, USA, since
September 2015. His current research interests
include high performance interconnects and pro-
tocols, parallel computer architecture, network-
based computing, exascale computing, network
topology aware computing, QoS, power-aware
LAN-WAN communication, fault tolerance, vir-
tualization, big data and cloud computing. He
has published over 50 papers in international

journals and conferences related to these research areas. He has
been actively involved in various professional activities in academic
journals and conferences. Dr. Subramoni is doing research on the
design and development of MVAPICH2 (High Performance MPI over
InfiniBand, iWARP and RoCE) and MVAPICH2-X (Hybrid MPI and
PGAS (OpenSHMEM, UPC and CAF)) software packages. He is a
member of IEEE. More details about Dr. Subramoni are available from
http://web.cse.ohio-state.edu/∼subramoni.1/.

Bracy Elton received a B.S. Cum laude, double
majoring in Mathematics and Computer Science,
from Pacific Lutheran University. He received
M.S. and Ph.D. degrees in Computer Science
from the University of California, Davis, while
a student-employee at Lawrence Livermore Na-
tional Laboratory. He is a Technical Fellow and
Senior Computational Scientist at Engility Cor-
poration with a focus in high performance com-
puting (HPC) in signal/image processing (SIP)
applications and systems. He holds a position as

a SIP On-Site in the US DOD High Performance Computing Modern-
ization Program’s User Productivity Enhancement, Technology Transfer
and Training (DOD HPCMP PETTT) activity. He co-chairs the PETTT
Emerging Computational Technologies Working Group and the Emerg-
ing Accelerator Technologies Technical Focus Area. He has 26+ years
of experience in HPC and computational science across multiple disci-
plines, including prior positions with supercomputer manufacturers and
the Ohio Supercomputer Center. He has 27 publications in respected
journals and conferences. He is a member of IEEE (Senior Member),
IEEE Computer Society, IEEE Signal Processing Society, SIAM, SIAM
Special Interest Groups (SIAGs) on Supercomputing, on Computational
Science and Engineering and on Imaging Science, ACM Special Interest
Group on HPC, American Mathematical Society, and Sigma Xi.

Dhabaleswar K. Panda is a professor of com-
puter science and engineering at Ohio State Uni-
versity. He has published more than 400 papers
in major journals and international conferences.
He and his research group members have been
doing extensive research on modern networking
technologies including InfiniBand, High-Speed
Ethernet and RDMA over Converged Enhanced
Ethernet (RoCE). The MVAPICH2 (High Perfor-
mance MPI over InfiniBand, iWARP and RoCE)
and MVAPICH2-X software libraries, developed

by his research group (http://mvapich.cse.ohio-state.edu), are currently
being used by more than 2,875 organizations worldwide (in 85 coun-
tries). This software has enabled several InfiniBand clusters to get into
the latest TOP500 ranking during the last decade. More than 447,000
downloads of this software have taken place from the project’s web-
site alone. The RDMA packages for Apache Spark, Apache Hadoop,
and Memcached together with OSU HiBD benchmarks from his group
(http://hibd.cse.ohio-state.edu) are also publicly available. These li-
braries are currently being used by more than 275 organizations in 34
countries. More than 25,150 downloads of these libraries have taken
place. His research has been supported by funding from the US National
Science Foundation, the US Department of Energy, the US Department
of Defense, and several industrial supporters, including Intel, Cisco,
Cray, SUN, Mellanox, QLogic, NVIDIA, Microsoft, and NetApp. He is an
IEEE fellow and a member of the ACM. More details about Prof. Panda
are available at http://web.cse.ohio-state.edu/∼panda.2/.

14

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2867222

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.top500.org/
http://web.cse.ohio-state.edu/~chu.368
http://web.cse.ohio-state.edu/~lu.932
http://web.cse.ohio-state.edu/~awan.10
http://web.cse.ohio-state.edu/~awan.10
http://web.cse.ohio-state.edu/~subramoni.1/
http://web.cse.ohio-state.edu/~panda.2/

