
International Journal of Parallel Programming
https://doi.org/10.1007/s10766-018-00623-w

Improving the Performance of Distributed MXNet with
RDMA

Mingfan Li1 · Ke Wen1 · Han Lin1 · Xu Jin1 · Zheng Wu1 · Hong An1 ·
Mengxian Chi1

Received: 18 September 2018 / Accepted: 18 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As one of the most influential deep learning frameworks, MXNet has achieved excel-
lent performance andmany breakthroughs in academic and industrial fields for various
machine learning situations. The initial implementation of MXNet uses proxy-socket
interface,which delivers suboptimal performance in distributed environment. In amas-
sive parallel training task, parameters are updated frequently during each training loop,
in which case network performance becomes the main factor of overall performance.
Over the past decade, high performance interconnects have employed remote direct
memory access (RDMA) technology to provide excellent performance for numer-
ous scientific domains. In this paper, we describe an efficient design that extends
the open-source MXNet to make it RDMA capable via RDMA-based parameter
server interfaces. With modest optimizations towards memory usage and transmis-
sion overhead, RDMA-based MXNet achieves great performance improvement over
the original software.Our experiments reveal that, for the communication subsystemof
MXNet, the new design achieves 16x speedup (up to 21x at peak) over 1Gigabit Ether-
net (1GigE). For the two training cases onMXNet, the optimized implementation gains
5x and 9x speedup, respectively. Compared to experiments on the IP-over-InfiniBand
(IPoIB) protocol, it achieves nearly 30% performance improvement, as well as better
scalability and alleviation of bottlenecks.

Keywords Distributed MXNet · Parameter server · RDMA · InfiniBand · Network
optimization

1 Introduction

In recent years, artificial intelligence has outperformed many state-of-the-art
approaches in conventional fields. Particularly, deep learning achieves great success

B Mingfan Li
mingfan@mail.ustc.edu.cn

1 University of Science and Technology of China, Hefei 230026, Anhui, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-00623-w&domain=pdf
http://orcid.org/0000-0002-1079-3126


International Journal of Parallel Programming

for object detection, natural language processing and medical image analysis [1–3].
Moreover, benefiting from sorts of specialized accelerators, such as Google TPUs and
NVIDA Volta GPUs, deep learning has drawn wider attention from experts across
areas.

Deep learning usually demands a large amount of training data and powerful com-
puting resources for data analysis. For one thing, the scale and complexity of machine
learning algorithms are still increasing for exploring better models. A recent study
shows that a deep neural network can even contain over 1000 layers [4]. In addition,
the training-data becomesmore complex for wider application scenarios. One applica-
tion scenario is the detection of lung nodules using 3D convolutional network models.
Each input sample is a computed tomography (CT) image of human lung, whose size
is approximately 500 ∗ 500 ∗ 500. It is difficult for a contemporary accelerator to
store a whole image and its intermediate computation results, regardless of training
or inference [3].

Training deep network with large input on a single node has its limitation, thus
distributed training is needed. Recent experiments where 90-epoch ImageNet training
with 2048 knights landing (KNL) just need minutes show vast potential for distributed
training [5]. With the increase of cluster scale and accelerators, communication has
become the bottlenecks for distributed application. While the sockets interface pro-
vides a great degree of portability, the byte-stream model in MXNet entails additional
processing overheads. High performance networks and software APIs, such as Open-
Fabrics, provide RDMA capability that fits well with the system [6].

In this paper, we make a thorough analysis of MXNet’s communication system,
especially for its multilevel framework in Fig. 1. On the high level, MXNet interacts
with the parameter server (namely ps-lite) through a global key-value store. At the
bottom level, ps-lite finishes data transfer by ZMQ library [7]. With the fundamen-
tal RDMA semantic model, we propose a naive design to transform TCP/IP based
communication into RDMA implementation. After that, we make some skilled opti-
mizations: for the memory view, we design a circular memory buffer to reuse the
RDMA pinned memory; for the efficiency view, we minimize the transmission over-
head in batch-based messaging style.

Early this year (Jan 29, 2018), DMLC releases the official RDMA enabling ps-lite.
The open literature shows the ps-lite operations obtains 34% improvements. Their
implementation is similar to our design, but realized with RDMA verbs. RDMA verbs
are wrappers for the lower level VPI verbs, the latter of which are applied in our
design [8]. Apart from the optimizations towards memory usage and transimission,
little disclosure about experiments on MXNet are discussed from their documents.

Our experiments illustrate that, the RDMA-capable parameter server ultimately
gains 16x (up to 21x at peak) speedup over the original software. The RDMA-based
MXNet obtains 5x and 9x speedup over the tcp-based version on two datasets. The
performance is even improved by 36% on communication subsystem over IP-over-
InfiniBand (IPoIB) [9]. For the evaluation of MXNet, two cases finally achieve 25%
and 31% speedup. Our optimizations achieve great improvement on performance, as
well as better scalability and alleviation of bottlenecks.

The rest of this paper is organized as follows. Section 2 introduces background
material of our work. Section 3 demonstrates our contributions to MXNet, including

123



International Journal of Parallel Programming

Fig. 1 Software stack of MXNet
communication framework

our analysis of communication framework and naive RDMA-based implementation.
Further optimizations are also discussed here. Section 4 describes the performance
benefits fromRDMA,wherewe conduct experiments for ps-lite andMXNet. Section 5
finally introduces our discussions and conclusions.

2 Background Review

2.1 MXNet Architecture

MXNet is a dataflow-based deep learning system, utilizing a dependency engine to
perform resource management and task scheduling. Each resource unit is registered
to the engine with a unique tag and all operations (e.g., matrix operation, data com-
munication) are pushed into the engine by specifying the required resource tags. The
system works in an asynchronous multithread pattern to achieve data- and model-
parallelism for better resource utilization.

Analogous to traditional machine learning frameworks, MXNet divides model
training into two roles: the worker performs local computation in active while the
server passively maintains global parameters. For each mini-batch iteration, the work-
ers first read the input data, then fetch the weight from the server. Then the gradient
vector is computed and push to the servers. At the same time, the servers will aggregate
the workers’ submissions and update global weight.

2.2 Parameter Server Framework

For the purpose of solving distributed machine learning problems, parameter server
framework supports flexible consistency models, elastic scalability and fault tolerance
[10]. In general, the primary communication characteristics of MXNet come from the
ps-lite. In ps-lite, nodes are divided into two kinds by their roles: clients are responsible
for data and workload while all servers maintain global shared parameters. In MXNet,
the corresponding representation of the parameters is neural network model. In addi-
tion, ps-lite prepares a channel for servers to execute user-defined functions, which
is the raw interface for updating parameters of network models. Such characteristics
ensure easier encapsulation of ps-lite into MXNet’s dataflow-driven pattern.

123



International Journal of Parallel Programming

Particularly for machine learning, ps-lite designs two types of communication
mechanisms: request/response and push/pull. The former is used to exchange control-
messages for few communication routines of scheduler. The latter pair is used to
transfer data messages between nodes. It’s notable that network traffic originates from
frequent data communication, which is addressed by data transfer operations, push and
pull. The push sends local modified data entries to remote (client submits gradients
to server). In turn, the pull retrieves remote data entries as requested (client fetches
weight from server).

2.3 RDMA and InfiniBand

InfiniBand is an open industry standard switched fabric designed to interconnect nodes
in high performance computation (HPC) clusters [11]. It is a high-speed, general
purpose I/O interconnect for worldwide computing centers. One of the main features
of InfiniBand is remote direct memory access (RDMA). This feature allows allows
full remote CPU bypass by letting one machine directly read or write the memory of
another machine without involving the remote CPU, which facilitates implementation
of advanced communication protocols.

InfiniBand Architecture provides two means of message transport: channel and
memory semantics. Inmemory semantics,RDMAwrite andRDMAread operations are
introduced. In channel semantics, send/receive operations are used for communication
like the TCP/IP protocol. Particularly, RDMA operations are one-sided and incur no
software overhead at the remote side, that enables true application bypass message
passing. Using RDMA requires the destination address must be known beforehand.
Furthermore, the detection of incoming message must be handled explicitly at the
receiver side.

IB verbs is a low level communication interface for RDMA ability over InfiniBand.
It contains necessaryAPIs for communication transactions. Programmers rely on these
interface for creating, modifying and destroying resources, such as queue-pairs (QP),
completion queues (CQ), memory regions (MR) and protection domains (PD). The
sending and receiving of work requests to QPs, getting completions from CQs are also
guaranteed.

3 Contributions

As discussed in MXNet’s communication architecture, data synchronization is sup-
ported with two primitives: push and pull. These primitives are actually implemented
by the parameter server framework. Thus, we advocate optimizing MXNet by extend-
ing ps-lite to RDMA-capable interface.

3.1 Communication Framework

The communication architecture of MXNet provides seamless work between multi-
device on a single machine (i.e., GPUs and CPUs), as well as multi-machine for

123



International Journal of Parallel Programming

KVStore merges KV 
pairs locally

ps-lite splits KV 
pairs into segments

ZMQ library compele 
data transfer

Reduced 
KV pairs

KV pairs 
segments Gobal shared 

KV store

data synchronization for inter- and intra- machine

Raw KV 
pairs

worker0

worker1

server0

server1

server2

data

dataflow

device

Fig. 2 Details for communication architecture and dataflow in MXNet

an entire cluster. Smoothly combined with KVStore, ps-lite and ZMQ, the blend
architecture achieves balance from aspects of execution model, program logic and
high performance. It implements efficient and reliable data transfer, especially for
heterogeneous environments.

At first, the workload is scattered into several compute devices within a node. In
turn, we will receive a number of the intermediate values from different devices. For
example, each device performs iterations and produces independent key-value (KV)
pairs parallelly. Instead of pushing these raw KV pairs, the KVStore merges interme-
diate values into local aggregated results by identical keys. After that, the ps-lite splits
the reduced KV pairs into multiple fragments, which will be submitted into target
servers finally. The partition policy and destination for segments are predefined by the
servers’ number and global key range. Figure 2 presents basic dataflow among dis-
tributed MXNet system, containing 2 workers equipped with total 4 compute devices
and 3 servers.

Data synchronization is divided into two-levels, inter- and intra- machine. After the
reduction and partition, the outbound segments are ultimately transmitted by ZMQ
interfaces. The aggregation strategy avoids extra data movement and minimizes net-
work traffic for sendingdata,which dramatically decreases the bandwidth requirement.
It’s notable that the communication subsystem is transparent to computation. In other
words, our optimizations for communication interfaces are independent on whether
CPU or GPU is used on computing.

One acceptable description of the communication system is to take it as joint
framework from three close layers: KVStore takes a role as distributed database for
parameters stored on MXNet; ps-lite is then responsible for conducting communi-
cation logic among distributed deep learning; the bottom ZMQ will server as high
performance media for data transfer tool.

123



International Journal of Parallel Programming

Fig. 3 A basic model for parameter server porting RDMA

3.2 Basic Model

The software architecture and communication pattern are crucial for RDMA optimiz-
ing. As for MXNet, the three-level constructure of subsystem plays different role for
distributed training. Consider that the ps-lite is specially designed for MXNet and
distributed machine learning. We consequently propose a typical design to implement
the RDMA-capable MXNet by replacing the ZMQ interfaces with RDMA operations.
In this case, MXNet’s communication architecture is smoothly equipped with RDMA
technology.

There are three roles in ps-lite: scheduler, workers, and servers. Figure 3 shows a
prototype model that consists of 1 scheduler, 3 workers and 3 servers. The necessary
connections between these QPs are also marked out.

(a) the scheduler conduct management with control message among all roles
(b) the worker will only communicates with other roles (control message with sched-

uler and data message with multi servers)
(c) similar to the woker, the server communicates with non-server roles

With these established QP connections, it’s possible to transfer message with
RDMA among cluster. This model is similar to connection orinted TCP, which means
reliable and stable communication service. Self communication is identical to com-
munication between distinct nodes. The design originates from the subscribe/publish
model for ZMQ solution, which treats the communication process for both inter- and
intra- nodes based on gernal format in host:port.

We implement basic design with replacing the ZMQ APIs (i.e., zmq_msg_send/
zmq_msg_recv) by RDMA interfaces: ibv_post_send/ibv_post_recv. We override the
communication interfaces, and redesign the communication for RDMA, which con-
trols the data transfer of ps-lite. The fundamental workflow is depicted in Fig. 4. The
initialization is still based on the raw ZMQ transport, as well as RDMA connection
preparation. After that, message is migrated into InfiniBand by substituting ZMQ
functions with the RDMA verbs. Our implementation selects the memory semantic
RDMA operation according to an empirical conclusion that the memory semantic is
generally faster than message semantic.

123



International Journal of Parallel Programming

Fig. 4 The implementation of RDMA-based ps-lite

Fig. 5 Memory usage: circular receiving buffer and direct sending buffer

3.3 Memory Reuse

RDMA operations need pinned memory as data buffer for each QP connection. One
buffer is prepared for sending data, the other is for receiving data. These buffers
are accessible memory for IB hardware to direct data writing or reading without
the involvement of host CPU. This hardware DMA ability of IB equipment that is
connected with remote devices is the true reason for RDMA to be efficient. The
pinned memory for RDMA buffers is persistent for the physical device it mapped to,
i.e. it cannot be swapped out by OS. This is another reason for ultra-low latency and
high speed of RDMA.

For a ps-lite system including n servers and m workers, if buffer size is k, we will
need m × n × 2 × k buffer space at total (each QP connection requires 4 buffers).
The space complexity for RDMA communication will be O(n2) for the system scale.
However, abusing the pinned memory may incur the cripple of OS performance for
the decrement of manageable memory.

In order to improve the utilization of pinned memory, we implement self-
management for the memory buffer. Consider that the traditional strategy will
allocate/free physical memory and record every transaction in a list as reference for
later operation. These transactions slice contiguous space into many discrete smaller
pieces, which violates the RDMA requirement for contiguous memory. Therefore, we
choose another intuitional mechanism. As shown in Fig. 5, we build the large memory
as a circular buffer and record a buffer flag, index.

To prevent overflow,we set a soft limitation asmaximumflag.As soon as the index is
over the flag, we will clear the index simultaneously and arrange the next request from
scratch. Avoiding slicing the memory by allocation and free operation, we just mark

123



International Journal of Parallel Programming

Fig. 6 ZMQ-based transfer procedures for ps-lite

the limitation flag and select next available memory address. Furthermore, we design a
continuous proxy daemon for data preparation by the thread-safe queue for managing
the buffer operation, which helps reduce the overhead from memory management.

3.4 Batch-based Transfer

The original ps-lite uses a number of shared points to avoid data movement. There
is no explicit data movement for communication process, beginning at the KVStore
invocations and ending at the ZMQ APIs. Such architecture further improves the per-
formance and decreases the latency.Meanwhile, the discrete data locations for a whole
message require that ps-lite delivers one message with several transfer operations.

The complete procedures are presented in Fig. 6, which shows the detail formessag-
ing between objects. The meta and several data are one-by-one delivered by sequential
ZMQ transport operation, when a tag is marked for receiver to judge the end of current
message and to prepare the next incoming message. After the receiver gets all subparts
of message, it assembles the subparts into complete message as claimed by the first
meta description.

Naive solution for porting the ps-lite intoRDMAis just to replace theZMQtransport
with RDMA APIs for the control flow, where the tag can just be represented by the
immediate data in RDMA Write. Consider that our previous introduction for RDMA
memory design, the outbound message lies in a large contiguous pinned memory for
RDMA operation.

Wecan integratemultiple data block into singlemessage,which removes the process
for slicing and reassembling the messages for transfer transactions. The sender wraps
the meta and all data blocks into a special block, and the encapsulated message can
then be extracted by the receiver. Besides the row meta field and multiple data fields
for each message, we add several marks for distinguishing the data field, as in Table 1.

123



International Journal of Parallel Programming

Table 1 RDMA-based message
format

Size/bit Description

8 Data block number (N)

N * 8 Size of each block, from block 1 to N

Raw meta size Original metadata

Total data size Original data block

The combination field of one data_block_num flag and multiple data_block_size flags
is newly meta-data for assembling the received message.

The RDMA communication is an immediately, blocking mechanism, which means
that two objects with connected QP pair can’t execute the next data transfer request
until the completion of current work request. For each transfer, we have to performe
a few routines, such as pre-processing for transfer, request submitting, waiting and
polling result from completion queue, and post-processing. Particularly, the polling
process can’t be returned until the completion of each transfer. After organizing the
data into RDMA-based message format, the batch-based transimission reduces the
overhead for original data transfer.

4 Performance Evaluation

We conduct our evaluation from two aspects, the pure communication efficiency in
ps-lite and the whole distributed training process in MXNet. According to the analysis
in Sect. 3, the performance evaluation towards the communication has nothing to do
with the compute device. Our platforms for evaluation are:

(a) ClusterA: 3 Sugon nodeswith dual Intel XeonE5-2660 processors. Each node has
128GB of main memory. The interconnect hardware consisits of 1000M Ethernet
and Mellanox 40G QDR InfiniBand.

(b) Cluster B: 9 Sugon nodes and each node are the same to Cluster A configurations.

Wemeasure the pure communication efficiency in Cluster A, where 3 nodes respec-
tively play a role in system, like scheduler, server, worker. The whole distributed
training test are among Cluster B, where 8 nodes are servers and workers, within
additional scheduler node. We perform the specified test cases on different software
and hardware environments (Un-optimized and RDMA-optimized software, Ethernet
and InfiniBand). With different elapsed time for the same test case, we can judge the
performance improvement from the optimizations.

4.1 Evaluation for Ps-lite

The ps-lite provides two fundamental services for distributed system, request/response
model for control message and push/pull model for data transfer. The KVStore imple-
mentation from the key-value pair just suits the test case that sends 100,000-length
key-value pairs for 10,000 times. For distributed system, we increase number of the
worker and server, from 1 up to 32 to evaluate the scalability. We measure the total

123



International Journal of Parallel Programming

Fig. 7 Performance for purely communication in ps-lite

execution time of the same tasks on 3 different versions (TCP, IPoIB, RDMA), and
we define the speedup ratio of Y over X as following equation:

Speedup(Y , X) = T (X)

T (Y )
(1)

where x ∈ {TCP, I PoI B, RDMA} and T (x) means the elapsed time.
Figure 7 shows the result of experiments on ps-lite. Compared with the traditional

Ethernet, the performance gets over 16x speedup, up to 21x at peak. Removing the
hardware advantage, our software obtains 36% improvements, compared to the IPoIB
protocol.

Obviously, the InfiniBand hardware contributes a lot to the improvements of both
IPoIB protocol and RDMA. But the pure software optimizations also gains splendid
outcome especially for heavy traffic.

(1) With little workers/servers (less than 8), the system performance is not much
influenced by the slight traffic. In this case, the performance improvement depends
larger degree on the hardware, the InfiniBand over Ethernet. Compared with
original TCP-based software, we achieve the 21x speedup for RDMA, with 19x
speedup for IPoIB. The comparison between RDMA and IPoIB shows that only
11% improvements. We blame it on the weak CPU overhead for communication.

(2) While the system scale increases, the overhead from communication incurs CPU
resource damage for heavy traffic. The general speedup by tcp version decreases
to 16x for our RDMA implementation, while the corresponding IPoIB implemen-
tation is severely influenced, from 19x to 12x speedup. The relative comparison
between RDMA and IPoIB shows 36% improvements. Our RDMA-based ps-lite
shows better alleviation of bottlenecks for heavier traffic.

Generally speaking, RDMA releases the CPU resources that is greatly consumed by
tedius message processing from TCP/IP protocol stack. With heavier traffic, RDMA
will be more effective, which meets our evaluation for the better scalability of RDMA-
based ps-lite over the IPoIB version.

123



International Journal of Parallel Programming

Fig. 8 Performance difference for testcases in MXNet

4.2 Evaluation for MXNet

Weperformmodel trainingwithMXNet for several datasets on image processing field,
the MNIST for handwritten recognition and the cifar-10 for image classification. To
represent the heavy network communication than computation, we select the funda-
mentalMLP network (it just contains two fully connected network layers, and requires
a lot communication for weights updating). To emulate high strength communication
among the large-scale clusters, we make further increase for both two hidden neural
number up to 2048.

In Fig. 8, we show the performance improvement from RDMA optimizations,
evaluated on the MXNet. For the MNIST test case with the tcp protocol, the speedup
is pretty clear, the 3.13x speedup on just 2 nodes up to 4.62x on the whole 8 nodes. It
also shows the better result that IPoIB protocol on both performance and scalability,
from 6% improvement on 2 nodes to 25% on 8 nodes.

Results from cifar-10 experiments obtain similar and better outcome than the
MNIST. The performance speedup over tcp protocol starts begin by 5x at 2 nodes
and comes up to 9x for the entire cluster, and the corresponding improvement over
IPoIB version varies from 14 to 31%. We obtain clearly better efficiency and scalabil-
ity, and the optimized software achieves the linear promotion with the cluster node.

The evaluation of both test cases, MNIST and cifar-10, proves that our work gains
great success on the distributed training process on MXNet. However, there are obvi-
ous differences between those two test cases. The cifar-10 obtains better performance
improvement, the 5x speedup versus 9x over tcp, corresponding 25% improvement
versus 31% over IPoIB. We blame the difference on the different account of commu-
nication workload for the whole training process. This attributes to the larger network
parameters along with cifar-10 test case than mnist. The three channel RGB input in
cifar-10 is 3 times over the single channel grayscale in mnist. Therefore, it receives
better outcome from RDMA than the non-optimized software.

123



International Journal of Parallel Programming

5 Discussion and Conclusion

5.1 RelatedWorks

Architecture design Complementing software with RDMA contains two different
designs. In a direct approach, the original communication framework is removed,
and new-designed module takes its role for porting network traffic into InfiniBand.
An alternatively method simply replaces the partial communication interfaces, and
it conserves the original software feature as much as possible. In order to fulfil the
efficient optimizations, some researches, like RDMA-based HDFS or Memcached
[12–14], utilize the first solution to redesign their own unified communication run-
time (UCR) [15]. However, similar work like recent RDMA-capable Tensorflow or
Hadoop RPC over InfiniBand prefer the second approach, they contribute adaptation
for original software with extra RDMA bypass for tensor messages [16,17]. RDMA
enabling Tensorflow realizes the high performance data transfer on RDMA but also
relies on the original grpc for “administrative” tasks. From the perspective of MXNet,
the three-level subsystem collectively makes up the communication system. We adopt
the second solution which replaces the ZMQ library with RDMA operation.

RDMA buffer technique As for the registration of pinned buffer, one sophisticated
approach is to register a large contiguous memory in advance and manage it for later
memory request. To prepare the registered memory, typical design is to apply the
REQ/ACK message to build automatic state machine for monitoring memory usage.
However, we use a simple index and thread-safe queue for circular buffermaintenance.
Instead of recording a transaction list, we modify the index flag and maintain the
executionqueue. Past studies aboutRDMAhave showngoodperformance in achieving
computation/communication overlap with self-management, such as RDMA-capable
Tensorflow or RDMAKey-Value Store [16,18]. We learn from their work and present
our proposal.

Distributedmachine learningAdistributed system shouldmeet numerous system level
requirements, including consistency, fault tolerance, communication and resource
management. Relative researches about MXNet communication mainly concentrate
on software infrastructures. Zhang’s Poseidon presents a hybrid communicationmodel
for different neural network layer, based on the distribution of parameters among dif-
ferent layers, especially for GPU environments [19]. Latest work about embedding
MPI parallelism for parameter server model, MXNet-MPI, achieves excellent perfor-
mance [20]. Different from their work, our work pursuits performance improvement
by optimizing MXNet with RDMA ability. Some RDMA-based researches aim at
crafting a middleware for distributed system, such as the MPICH2 over InfiniBand
or RDMA engine for TCP/IP processor [21,22]. And Kalia’s research for building
efficiently key-value sevices also inspires us on KVStore module [23].

123



International Journal of Parallel Programming

5.2 Conclusion

This paper presents a RDMA-capable design of MXNet by implementing a low-level
communication subsystem, RDMA-based ps-lite, by replacing ZMQ with RDMA
operations. Our experiments demonstrate great performance improvement on both
communication and overall training for MXNet.

We analyze theworkflow of distributedMXNet and focus onmulti-layer distributed
KVStore. After a naive RDMA design of replacing the ZMQ transmission with the
RDMAverbs, we thenmake several optimizations onmemorymanagement and trans-
mission overhead. In our final evaluation, the RDMA optimized ps-lite achieves over
16x speedup, and more than 21x speedup at peak for purely communication workload.
TheMXNet equippedwith RDMA-based ps-lite shows 5x and 9x improvement on dif-
ferent test cases. It also shows pretty scalability with increasing of nodes and training
workload from our evaluation. Apart from the hardware advantage, the optimizations
for software obtains 30% performance improvement Compared with IPoIB.

In conclusion, our RDMA-based MXNet provides a possible approach to equip
complex frameworks the RDMA ability by redesigning intermediate interfaces. Two
techniques introduced in the paper: self-management circular buffer and batch-based
operation, are common but typical for architecture design and software optimizations.

Acknowledgements The work is supported by the National Key Research and Development Program of
China(Grants No. 2016YFB1000403).

References

1. de Bruijne, M.: Machine learning approaches in medical image analysis: from detection to diagnosis.
Med. Image. Anal. 33, 94–97 (2016). https://doi.org/10.1016/j.media.2016.06.032

2. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural lan-
guage processing. IEEEComput. Intell. Mag. 13(3), 55–75 (2018). https://doi.org/10.1109/MCI.2018.
2840738

3. Pérez, G., Arbeláez, P.: Automated detection of lung nodules with three-dimensional convolutional
neural networks. Proc. SPIE 10572, 10572-1-10572-10 (2017). https://doi.org/10.1117/12.2285954

4. Huang G., Sun, Y., Liu, Z., Sedra, D.,Weinberger, K.Q.: Deep networks with stochastic depth. In:
European Conference on Computer Vision, pp. 646–661. Springer (2016)

5. You, Y., Zhang, Z., Hsieh, C., Demmel, J., Keutzer, K.: ImageNet training in minutes. CoRR.
arXiv:1709.05011 (2017)

6. Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R.D., Pritchard, H., Squyres, J.M.: A brief introduc-
tion to the OpenFabrics interfaces: a new network API for maximizing high performance application
efficiency. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pp. 34–39
(2015). https://doi.org/10.1109/HOTI.2015.19

7. Hintjens, P.: ZeroMQ: the guide. http://zguide.zeromq.org/page:all (2010)
8. MacArthur, P., Liu, Q., Russell, R.D., Mizero, F., Veeraraghavan, M., Dennis, J.M.: An integrated

tutorial on InfiniBand, verbs, and MPI. IEEE Commun. Surv. Tutorials 19(4), 2894–2926 (2017).
https://doi.org/10.1109/COMST.2017.2746083

9. RDMA Consortium and others: Architectural specifications for RDMA over TCP/IP (2009)
10. Li, M., Zhou, L.,Yang, Z., Li, A., Xia, F., Andersen, D.G., Smola, A.: Parameter server for distributed

machine learning. In: Big Learning NIPS Workshop, vol. 6, p. 2 (2013)
11. Buyya, R., Cortes, T., Jin, H.: An introduction to the InfiniBand architecture. In: High Perfor-

mance Mass Storage and Parallel I/O: Technologies and Applications (2002). https://doi.org/10.1109/
9780470544839.ch42

123

https://doi.org/10.1016/j.media.2016.06.032
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1117/12.2285954
http://arxiv.org/abs/1709.05011
https://doi.org/10.1109/HOTI.2015.19
http://zguide.zeromq.org/page:all
https://doi.org/10.1109/COMST.2017.2746083
https://doi.org/10.1109/9780470544839.ch42
https://doi.org/10.1109/9780470544839.ch42


International Journal of Parallel Programming

12. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation over InfiniBand.
Int. J. Parallel Program. 32(3), 167–198 (2004). https://doi.org/10.1023/B:IJPP.0000029272.69895.c1

13. Islam, N.S., Rahman, M.W., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H., Murthy, C.,
Panda, D.K.: High performance RDMA-based design of HDFS over InfiniBand. In: Proceedings of
the International Conference on High Performance Computing, Networking, Storage and Analysis, p.
35. IEEE Computer Society Press (2012)

14. Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M., Islam, N.S., Ouyang,
X., Wang, H., Sur, S., et al.: Memcached design on high performance rdma capable interconnects. In:
2011 International Conference on Parallel Processing (ICPP), pp. 743–752. IEEE (2011)

15. Jose, J., Luo, M., Sur, S., Panda, D.K.: Unifying UPC and MPI runtimes: experience with MVAPICH.
In: Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model,
p. 5. ACM (2010)

16. Jia, C., Liu, J., Jin, X., Lin, H., An, 412 H., Han, W., Wu, Z., Chi, M.: Improving the performance of
distributed TensorFlow with RDMA. Int. J. Parallel Program. 46(4), 674–685 (2018). https://doi.org/
10.1007/s10766-017-0520-3

17. Lu, X., Islam, NS.,Wasi-Ur-Rahman, M., Jose, J., Subramoni, H.,Wang, H., Panda, D.K.: High-
performance design of Hadoop RPC with RDMA over InfiniBand. In: 2013 42nd International
Conference on Parallel Processing (ICPP), pp 641–650. IEEE (2013)

18. Mitchell, C., Geng, Y., Li, J.: Using one-sided RDMA reads to build a fast, CPU-efficient key-value
store. In: USENIX Annual Technical Conference, pp. 103–114 (2013)

19. Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu, Z., Wei, J., Xie, P., Xing, E.P.: Poseidon:
an efficient communication architecture for distributed deep learning on GPU clusters. arXiv preprint
arXiv:1706.03292 (2017)

20. Mamidala, A.R., Kollias, G.,Ward, C., Artico, F.:MXNET-MPI: embeddingMPI parallelism in param-
eter server task model for scaling deep learning. ArXiv e-prints arXiv:1801.03855. http://adsabs.
harvard.edu/abs/2018arXiv180103855M (2018)

21. Liu, J., Jiang,W.,Wyckoff, P., Panda, D.K., Ashton, D., Buntinas, D., Gropp,W., Toonen, B.: In: 18th
International Parallel and Distributed Processing Symposium, 2004 (IEEE, 2004), p. 16

22. Pandya, A.A.: TCP/IP processor and engine using RDMA (2008). US Patent 7,376,755
23. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value services. ACM

SIGCOMM Comput. Commun. Rev. 44(4), 295–306 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://doi.org/10.1007/s10766-017-0520-3
https://doi.org/10.1007/s10766-017-0520-3
http://arxiv.org/abs/1706.03292
http://arxiv.org/abs/arXiv:1801.03855
http://adsabs.harvard.edu/abs/2018arXiv180103855M
http://adsabs.harvard.edu/abs/2018arXiv180103855M

	Improving the Performance of Distributed MXNet with RDMA
	Abstract
	1 Introduction
	2 Background Review
	2.1 MXNet Architecture
	2.2 Parameter Server Framework
	2.3 RDMA and InfiniBand

	3 Contributions
	3.1 Communication Framework
	3.2 Basic Model
	3.3 Memory Reuse
	3.4 Batch-based Transfer

	4 Performance Evaluation
	4.1 Evaluation for Ps-lite
	4.2 Evaluation for MXNet

	5 Discussion and Conclusion
	5.1 Related Works
	5.2 Conclusion

	Acknowledgements
	References




