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Abstract TensorFlow is an open-source software library designed for Deep Learning
using dataflow graph computation. Thanks to the flexible architecture of TensorFlow,
users can deploy computation to one or more CPUs or GPUs in a desktop, server, or
mobile device with a single APL In a distributed TensorFlow work process, it uses
gRPC to connect between different nodes. However, when deploying training tasks on
high performance computing clusters, the performance of gRPC becomes a bottleneck
of distributed TensorFlow system. HPC clusters are usually equipped with Infiniband
network, in addition to traditional TCP/IP network. But open-sourced TensorFlow
has not taken this advantage. We present a RDMA-capable design of TensorFlow. By
porting the Tensor send/receive parts of TensorFlow into RDMA verbs, we finally
get nearly 6x performance improvements over the original distributed TensorFlow,
based on gRPC. The TensorFlow system with RDMA support shows a great scalability
among the training scale.
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1 Introduction

Inrecent years, Machine Learning has driven advances in many different fields. More-
over, benefiting from the rapid growth of computing power, Deep Learning has drawn
wider and wider attention from researchers and engineers.

TensorFlow [1] is a numerical computation system designed for Machine Learning,
which supports a variety of applications, with a focus on training and inference on deep
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neural networks. It can efficiently support large-scale training and inference as well
as flexibly support experimentation and research into new models and system-level
optimizations.

Deep Learning process usually requires a large amount of training data and powerful
computing recourses to deal with the data. With the increasing size of the datasets, a
single compute node is highly restrictive.

Some studies on it build frameworks over single node TensorFlow to achieve good
scalability—such as Spark-based framework [2] or MPI-based distributed system [3].
The official Distributed TensorFlow was open-sourced in April, 2016.

1.1 Problem Statement

Training a Neural Network with multiple hidden layers is usually a time consuming
work. For example, the champion algorithm of 2012, ImageNet Large Scale Visual
Recognition Challenge—Ilater called Alexnet [4]—consists of five convolutional lay-
ers and three fully connected layers with nearly 60 million parameters. According to
the paper, the training process for roughly 90 cycles through the training set of 1.2
million images took 5-6days on two NVIDIA GTX 580 3 GB GPUs. Despite the
sustained growth of computing power, a greater network will still be a pressing need
in the future.

However, the open-sourced TensorFlow did not seem to show an advantage in
performance as we expected. Recent research from HKBU [5] tested several popular
Deep Learning frameworks; TensorFlow did not perform well in their test results.

In order to evaluate the distributed TensorFlow, we wrote a distributed Alexnet
benchmark based on the Alexnet CPU version provided by HKBU dlbench project.
Data scalar of this benchmark is the same as the original algorithm, while the input
data gets replaced by random pixels.

The test is performed in a 8-node CPU cluster. Each one has dual Intel Xeon ES5-
2660 processors with 1000M Ethernet and Mellanox 40G QDR InfniBand. The test
counts for 300 steps’ elapsed time, with each step of 24 RGB “pictures” of 224 x224
pixels as input data.

Figure 1 shows our test results. Single node TensorFlow takes 224 seconds, while
the elapsed times of the same data size in the distributed version are much more
than that. In addition, expanding from 2 workers to 3 workers (2 compute nodes to
3 compute nodes) shows bad scalability. The average CPU utilization of each node
during the whole test is limited to a low level. It is obvious that communication with
gRPC through TCP/IP becomes a bottleneck of the distributed system. Under such
distributed circumstances, GPU can finish the computing part much faster, while the
latency caused by network communication may become more obvious over the whole
process.

1.2 Contributions

Aiming to improve the performance of the distributed TensorFlow system and make
use of the Infiniband network deployed in our HPC clusters, this paper presents a
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Fig. 1 Test results of Alexnet in Distributed TensorFlow using TCP/IP

RDMA-capable design of TensorFlow, which, by porting the Tensor send/receive
parts into RDMA verbs, achieves great performance improvement over the original
gRPC version.

The rest of the paper is organized as follows:

Background material is presented in Sect. 2, as well as some related works. Section 3
presents our contribution to TensorFlow. We first analyze the workflow of Tensor-
Flow’s send/receive parts, and then design a RDMA protocol to fit into the distributed
TensorFlow. Some other optimization methods are used to improve it. Section 4 shows
the evaluations of our work. Section 5 concludes our work.

2 Background Review
2.1 TensorFlow Architecture

TensorFlow uses a dataflow graph to organize its computations and provides a friendly
interface for users. The master translates user requests into execution. Then the
dataflow executor handles requests from the master, and schedules the execution of
the kernels that comprise the graph. Its runtime contains over 200 standard operations;
computation works can be efficiently done with the control of the executor.

Each operation resides on a particular device, such as a CPU or GPU in a particular
task. A device is responsible for executing a kernel for each operation assigned to it.

Distributed TensorFlow works similarly to multi-device execution [6]. After device
placement, a subgraph is created per machine. Send/Receive node pairs that commu-
nicate across worker processes use remote communication mechanisms to move data
across machine boundaries. Google’s paper mentioned that their work supports both
TCP and RDMA, while the open-source version we get now only implements gRPC
to organize communication.
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2.2 gRPC

gRPC is an open-source framework from Google for handling remote procedure calls
[7]. It is based on the HTTP/2 standard, and enables easy creation of highly perfor-
mant, scalable APIs and micro services in many popular programming languages and
platforms.

gRPC uses “completion queue” to manage the performing of multi-threaded tasks,
and the execution of every task is associated with the “grpc_exec_ctx” closure mech-
anism. In order to asynchronously establish the connection and transport data, gRPC
uses “pollset” to manage input and output file descriptors. By polling the file descrip-
tors of each “pollset” using epoll, once TCP socket starts to connect, data either comes
in from TCP or the remote TCP connection is going to shutdown — the callback func-
tions that are combined with specific file descriptors will be called to handle these
different conditions.

2.3 Infiniband and RDMA

The InfiniBand Architecture [8] defines a switched network fabric for interconnect-
ing processing nodes and I/O nodes. It provides a communication and management
infrastructure for inter-processor communication and I/O. In an InfiniBand network,
hosts are connected to the fabric by Host Channel Adapters (HCAs). InfiniBand uses a
queue-based model. A Queue Pair in InfiniBand consists of two queues: a send queue
and a receive queue. The send queue holds instructions to transmit data and the receive
queue holds instructions that describe where received data is to be placed. Communi-
cation operations are described in the Work Queue Requests (WQR), or descriptors,
and submitted to the work queue. The completion of WQRs is reported through Com-
pletion Queues (CQs). Once a work queue element is finished, a completion entry is
placed in the associated completion queue. Applications can check the completion
queue to see if any work queue request has been finished.

InfiniBand Architecture supports both channel semantics and memory semantics.
In channel semantics, send/receive operations are used for communication. In memory
semantics, InfiniBand provides Remote Direct Memory Access (RDMA) operations,
including RDMA Write and RDMA Read. RDMA operations are one-sided and do
not incur software overhead at the remote side. This enables true application bypass
message passing. The processor on the machine can continue its computation task
without bothering with incoming messages. Thus, RDMA can positively impact the
computation and communication overlap. Additionally, RDMA Write operation can
gather multiple data segments together and write all data into a contiguous buffer at the
receiver end. RDMA Write with Immediate data is also supported. With Immediate
data, a RDMA Write operation consumes a receive descriptor and then can generate
a completion entry to notify the remote node of the completion of the RDMA Write
operation.

IB verbs is an implementation of the RDMA verbs for Infiniband (according to the
Infiniband specifications). It handles the control path of creating, modifying, query-
ing and destroying resources such as Protection Domains (PD), Completion Queues
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(CQ), Queue-Pairs (QP), Shared Receive Queues (SRQ), Address Handles (AH) and
Memory Regions (MR). It also handles sending and receiving data posted to QPs and
SRQs, getting completions from CQs using polling and completion events.

The control path is implemented through system calls to the ib verbs kernel module,
which further calls the low-level hardware driver. The data path is implemented through
calls made to the low-level hardware library, which, in most cases, interacts directly
with the hardware and provides kernel and network stack bypass (saving context/mode
switches) along with zero copy and an asynchronous I/O model.

2.4 Related Works

Several studies mentioned in Sect. 1 avoid the use of offically open-sourced distributed
TensorFlow, as well as the gRPC. They try to build a higher level scheduling framework
and data gather/scatter framework (by Spark or MPI) over non-distributed TensorFlow.
Such a framework maintains the training data itself, and single node TensorFlow is
just used as its sub-module or so-called “backend.” Their works generally require few
or no changes to the TensorFlow runtime, while users have to deal with some other
issues themselves (such as split, merge, gather, or scatter the data) rather than benefit
from the flexibility of the distribued TensorFlow system.

Another approach is to port the gRPC module into RDMA, aiming to improve
the performance of gRPC and indirectly speed up the distributed TensorFlow. Just as
some discussions from the industry and other researchers do [9], our previous work
(finished last year) has already tried this method. The result of it is about to triple the
performance of the original TCP version.

Just at the time we finished this paper (around April 2017), Yahoo submitted a pull
request for their RDMA version to TensorFlow and it was accepted in TensorFlow
1.2.0-rcO on May 20th, 2017. Since they have not given any written statements yet,
we will compare their work with ours later in this paper.

3 Porting TensorFlow into RDMA
3.1 Send/Receive Process in TensorFlow

Dataflow implementation simplifies distributed execution, as it makes communi-
cation between subcomputations explicit. TensorFlow runtime places operations on
devices, subject to implicit or explicit constraints in the graph.

Once the operations in a graph have been placed, and the partial subgraph has
been computed, TensorFlow partitions the operations into per-device subgraphs. A
per-device subgraph for device d contains all of the operations that were assigned to d,
with additional Send and Recv operations that replace edges across device boundaries.
Send transmits its single input to a specified device as soon as the tensor is available,
using a rendezvous key to name the value. Recv has a single output, and blocks until
the value for a specified rendezvous key is available locally, before producing that
value.
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Fig. 2 Single node workflow of Send/Recv operations

Figure 2 shows the workflow of Send/Recv operations within the same machine.
The Tensor data transmitted by Send/Recv operations are indexed in an object called
Rendezvous. The Recv operation first checks the rendezvous key of the value in Ren-
dezvous Tables. If the rendezvous key exists (inserted by a previous Send operation),
just get the Tensor data and return it by a callback function. Otherwise, it inserts
a waiting item to the Rendezvous Tables, which contains the requiring rendezvous
key as well as saves the callback function as a waiter. When the Send operation is
processed, it will check the Rendezvous Tables, too. If the rendezvous key exists
(inserted by a previous Recv operation), just get the waiting item and run the waiter
function with the sending Tensor data. Otherwise, it inserts a data item into the Ren-
dezvous Tables, which contains the sending rendezvous key and the sending Tensor
data.

We should notice that Send/Recv operations within a single machine (run in the
non-distributed TensorFlow) use memory (Rendezvous object) to perform the com-
munication, while the network communications occur in distributed environment.
Figure 3 shows such a workflow.

Communication starts at the receive side. Recv operation sends a Data Request to
the send side asking for Tensor data. The waiting service of the send side performs a
Recv operation to get data from local Rendezvous object. Once the Tensor is ready, it
responses the data to the receive side. Receive side then runs the callback function to
finish the remote Recy operation.

The Data Request and Data Response processes are done by network communica-
tions or, as in this case gRPC specifically. That’s what our work focuses on.
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Fig. 3 Cross node workflow of Send/Recv operations

3.2 RDMA Process Design

Distributed TensorFlow uses the rendezvous mechanism to organize its communica-
tion process.

Typically, in a Rendezvous Protocol, the sender and the receiver negotiate the
buffer availability on both sides before the message transfer actually takes place. For
achieving high performance message passing for large messages, it is critical that
message copies are avoided. The Rendezvous Protocol provides a way to achieve
zero-copy message transfer because the sender can know the location of the receivers
buffer, or vice-versa.

Several studies about RDMA have shown good performance in achieving com-
putation/communication overlap with fast memory registration based RDMA Write
Process [10] or RDMA Read-Based Rendezvous Protocol [11]. We learn from their
works and design our own protocols base on TensorFlow workflow.

To modify the communication process into RDMA, we design a RDMA read-based
protocol and a RDMA write-based protocol to replace the original gRPC calls.

After the connection of Master Service and Worker Service in distributed Tensor-
Flow cluster, the RDMA service of each side gets connected. RDMA contexts (like
lid, gpn, psn, and so on) are exchanged through TCP/IP at first, while in the following
process, TCP/IP is no longer used and all of the communications pass through RDMA.
The basic protocol is illustrated in Fig. 4.

In the RDMA read protocol (Fig. 4a), communication starts by the receive side.
Recv operation sends a Tensor Request message to the send side asking for Tensor data.
The waiting service of the send side performs a Recv operation to get data from the
local Rendezvous object, and at the same time, prepares a memory buffer for upcoming
RDMA operations, including buffer creations and memory bind registrations. Once
the Tensor is ready, it responses the data size, data address and rkey to the receive side.
Receive side then prepares a corresponding receive buffer and calls RDMA read to get
the Tensor data from remote memory. After the completion of RDMA read process,
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Fig. 4 RDMA protocol for distributed TensorFlow. a RDMA READ and b RDMA WRITE

receive side then runs the callback function to finish the Recv operation, as well as
sends a Buffer Release message to inform the send side.

RDMA write protocol (Fig. 4b) is similar to the process described above. Read pro-
tocol uses fewer interacting messages, while write protocol overlaps communication
time and buffer register time in each side.

In our evaluations, these two protocols acquire almost the same performance after
further optimizations.

Yahoo’s design of IB verbs is similar to our RDMA write protocol. Our current
work finally gets about 10% more performance than their version.

The study on RDMA Read-Based Rendezvous Protocol [11] shows a great advan-
tage to use RDMA read protocol with dynamic interrupt over RDMA write. Regarding
limitations of the TensorFlow Runtime, we have not finished the interrupt part yet and
our work has the potential for further improvement.

3.3 Memory Optimization

Studies about memory management of the RDMA process [12] have shown the impor-
tance of hidden memory management costs.

One of the key differences between RDMA and TCP/IP communication is that
the application has to explicitly manage the memory segments that will be used as
communication buffers. The application has to preregister certain parts of its memory
with the RDMA subsystem as source and/or destination buffers for the data transfers.
During registration, the memory pages get pinned by the OS, making sure they stay
resident and cannot be swapped out to disk. The pinned pages are then registered with
the RDMA-enabled NIC (RNIC) so that it can access them using DMA operations,
which eliminates the need for OS callbacks and intermediate buffering during transfers.
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The RDMA syntax refers to these registered memory segments as Memory Regions
(MR).

MR registration happens through the resource management path, which requires
kernel activity and therefore induces a delay, as well as a non-negligible CPU load.
Even though the expensive data copy operations are avoided with RDMA (zero copy),
the explicit buffer management renders RDMA useless for applications that are not
able to deal with their buffers efficiently.

Messages Buffer Reuse Each side of the RDMA pair has a fixed message send buffer
and message receive buffer, local send buffer is associated with the remote receive
buffer when exchanging the RDMA context. The messages used during interactions
have similar structures, so when sending another message we only rewrite the different
parts of the message and reuse the same part of the buffer.

Tensor Data Buffer Reuse During the Deep Learning training process or inferencing
process, different input data goes through the same data path, which means a Tensor of
the data flow graph will be sent and received many times during the whole process. MR
registration is a time consuming operation in both RDMA read and write protocols, but
these times can be cut off by memory reuse. Each time when a new block of memory is
registered to MR, we store its information of it (address and rkey) to a memory table by
Tensor name, Tensor source, and Tensor destination. The buffer stored in the memory
table will never be released when a pair of Send/Recv operations are completed. The
next time the same Tensor is sent or received, we can just get the data buffer from the
memory table instead of registering a new block of memory.

Memory Pool Implementation The data buffer reuse method described above, how-
ever, has the disadvantage of using too much memory. We then came up with a memory
pool implementation to reuse buffer and cut down memory usage. After the connec-
tion of the RDMA pair, we allocate a big block of memory from OS and register it
to Infiniband. The memory block is used as a memory pool. When Send operation or
Recv operation require a data buffer, we can just get memory from the big block. Spe-
cial “malloc” and “free” methods are used for allocating memory from the memory
pool and releasing memory to the memory pool.

Furthermore, we try to preload our own memory allocator library to replace the
standard C memory allocator (“malloc” and “free”). In this way, our runtime does not
even need to request memory during Send and Recv operations, since all of the memory
blocks are managed under our own memory pool. This part is still in development.

4 Evaluation

In this section, we evaluate our proposed designs for the RDMA optimized distributed
TensorFlow. We have declared in Sect.1 that the network latency has nothing to do
with whether CPU or GPU is used to perform the computing.

Our platforms for evaluation are:

Cluster A 8 SuperMicro nodes with dual Intel Xeon E5-2660 processors. Each
node has 128 GB of main memory. The nodes are connected with 1000M Ethernet
and Mellanox 40G QDR InfiniBand.
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Fig. 5 Test results of Alexnet in Distributed TensorFLow in Cluster A
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Fig. 6 Test results of Alexnet in Distributed TensorFLow in Cluster A

Cluster B 6 SuperMicro nodes with dual Intel Xeon E5-2698 processors. Each node
has 128 GB of main memory. The nodes are connected with Mellanox 100G EDR
InfiniBand.

We expect that the RDMA optimization reduces the communication latency in the
distributed TensorFlow system and improves its performance.

Figure 5 shows the results of the Alexnet test case described in Sect. 1.1. gRPC
through ipoib shows a 3 to 4 times speed-up in comparison to the original TCP/IP
version. This benefit comes from the hardware (Infiniband to Ethernet).

During the TCP/IP test, it can be observed clearly that CPU usages of the computer
nodes are very low. Moreover, the CPU usages even drop in periodicity to less than
10% (when waiting for communication). This bottleneck is caused by communication
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latency of TCP/IP gRPC. When using ipoib or RDMA optimized version, CPU usages
can be kept at a high level.

Our work over RDMA is about 30-40% faster than ipoib gRPC, and almost 6 times
faster than TCP/IP gRPC.

A further test in Fig. 6 describes steps per second the TensorFlow system can train,
which shows that our RDMA optimized distributed TensorFlow has a great scalability.
Each step of Alexnet test case input 24 RGB pictures of 224 x 224 pixels; the data path
includes inference, gradients computing, and parameters updating. With the help of
powerful CPU and Infiniband, RDMA optimized distributed TensorFlow acquires
nearly linear growth in performance.

5 Conclusion

This paper presents a RDMA-capable design of TensorFlow, which, by porting the
Tensor send/receive parts into RDMA verbs, achieves great performance improvement
over the original TCP/IP gRPC version.

We analyze the workflow of distributed TensorFlow and especially focus on the
send/receive parts of it. Then we design a RDMA read-based and a RDMA write-
based rendezvous protocol to fit into the distributed TensorFlow workflow. Several
optimizations are used. In our evaluation, the RDMA optimized distributed Tensor-
Flow shows a good performance over the original TCP/IP version, as well as a good
scalability with the increasing of compute nodes.

TensorFlow is a well-designed framework that uses a dataflow model to organize its
computation. Benefiting from the dataflow model, we believe that it has the potential
to gain more performance after further optimizations.
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