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Abstract
Deep learning emerges as an important new resource-intensive
workload and has been successfully applied in computer vi-
sion, speech, natural language processing, and so on. Dis-
tributed deep learning is becoming a necessity to cope with
growing data and model sizes. Its computation is typically
characterized by a simple tensor data abstraction to model
multi-dimensional matrices, a data-flow graph to model com-
putation, and iterative executions with relatively frequent
synchronizations, thereby making it substantially different
from Map/Reduce style distributed big data computation.

RPC, commonly used as the communication primitive, has
been adopted by popular deep learning frameworks such
as TensorFlow, which uses gRPC. We show that RPC is sub-
optimal for distributed deep learning computation, especially
on an RDMA-capable network. The tensor abstraction and
data-flow graph, coupled with an RDMA network, offers the
opportunity to reduce the unnecessary overhead (e.g., memo-
ry copy) without sacrificing programmability and generality.
In particular, from a data access point of view, a remote ma-
chine is abstracted just as a “device” on an RDMA channel,
with a simple memory interface for allocating, reading, and
writing memory regions. Our graph analyzer looks at both
the data flow graph and the tensors to optimize memory allo-
cation and remote data access using this interface. The result
is up to 169% improvement against an RPC implementation
optimized for RDMA, leading to faster convergence in the
training process.

CCSConcepts • Software and its engineering→Distri-
buted systems organizing principles; •Computingme-
thodologies→ Neural networks.
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1 Introduction
Deep learning, in the form of deep neural networks (DNN),
is gaining popularity thanks to its huge success in areas such
as speech, vision, and natural language processing. There
is a trend of using deeper, more complex neural network
models trained with increasingly larger data sets. Such a
model often takes hours, days, or even weeks to train on a
CPU/GPU cluster. The deep learning computation in training
a model involves multiple iterations with rather frequent
synchronizations. The performance therefore often critically
depends on the efficiency of cross-machine communication,
including its ability to leverage emerging network technolo-
gy, such as Remote Direct Memory Access (RDMA).
Remote Procedure Call (RPC) is a widely used general-

purpose communication paradigm. In addition to data trans-
fer, RPC takes care of data serialization and deserialization
for various data types, manages communication buffers, and
handles message assembly and batching automatically. Even
with RDMA, RPC can be used to help mediate concurrent (re-
mote) writes to the same data [21]. It is therefore natural for
deep learning frameworks such as TensorFlow [7] to adopt
gRPC, a form of RPC, as its communication abstraction.

In this paper, we argue against using RPC for distributed
deep learning computation, especially on an RDMA-capable
network. This is because (i) deep learning computation uses
tensor (or multi-dimensional matrix) as the main data type,
which consists of a plain byte array as tensor data and a sim-
ple schema as meta-data specifying the shape and element
type of the tensor. A tensor is often of a sufficiently large
size (tens of KB to MB) and its metadata/data sizes often
static. Using RPC for tensor data transfer does not provide
evident advantage on programmability or efficiency; and (ii)
using RPC typically involves memory copy to and from RPC-
managed communication buffers. Zero-copy cross-machine
tensor transfer is possible with RDMA because the source
and destination tensors can be appropriately allocated in the
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RDMA memory region and known statically. We therefore
advocate a simple and almost trivial interface that exposes
a remote machine as a “device” from a data access point of
view. This “device” is connected through an RDMA-based
channel that exposes control for parallelism. Remote mem-
ory regions can be allocated and directly accessed through
this “device” interface, much like a local GPU. This maps
naturally to the underlying RDMA network that provides
direct remote memory access. It is worth pointing out that
previous work on efficient communication on RDMA often
uses RPC (e.g., for writes) partly because they are focusing
on variable (and often small) size data transfer for key/value
stores, where they can benefit from batching in RPC and
from mediating concurrent remote writes to the same region
through RPC [16, 19, 20, 26]. Neither is necessary in our case.

We have designed a zero-copy cross-machine tensor trans-
fer mechanism directly on our “device” interface. This is
done through a combination of static analysis and dynamic
tracing on the data-flow graph of the computation in order
to (i) figure out whether the size of each tensor that needs
to be transferred across server can be statically known at
the compile time, (ii) assess whether such a tensor should
be allocated statically (for better efficiency) or dynamically
(for reduced memory footprint), (iii) ensure allocation of the
tensors on both the sending and receiving ends in the RD-
MA memory regions, (iv) identify the source and destination
addresses of tensors for RDMA-based transfer.
We have implemented an efficient RDMA-based “device”

library, and integrated it with our graph analysis and trac-
ing mechanism into the data-flow graph runtime of Tensor-
Flow [7] for tensor data transfer in distributed deep learning
computation. The experiments show that our proposed tech-
niques help TensorFlow achieve up to 169% improvement
in representative deep learning benchmarks against an RPC
implementation optimized for RDMA.

2 Background and Problems
In this section, we introduce the relevant background about
data-flow graphs in deep learning, RPC, and RDMA, lead-
ing to the potential issues of distributed deep learning over
RDMA with RPC.

2.1 Deep Learning Data-Flow Graph
Deep neural network describes a layered machine learning
model that consists of neurons connected through synapses.
The layered structure enables the model to learn hierarchical
features from the raw input data. Each layer normally repre-
sents a linear transformation on its inputs followed by some
non-linear activations. The left side of Figure 1 shows an
example of a vanilla deep neural network. The parameters
to learn in this model are the weights of the connections be-
tween neurons of different layers. The computation on this
model can be naturally expressed using a data-flow graph

Input layer : 

hidden layer : 

output layer : 

𝑾𝟏

𝑾𝟐

𝑿

𝑯 = 𝝈(𝑾𝟏 ∗ 𝑿)

𝒀 = 𝑾𝟐 ∗ 𝑯

MatMul

𝑿𝑾𝟏

Sigmoid 

MatMul

𝑾𝟐

𝑯

𝒀

Figure 1. Example of a vanilla neural network (left) and the
data-flow graph (right) of its forward computation. σ is the
non-linear Sigmoid function. Bold symbols are the variables
representing tensors.
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Figure 2. Overview of the distributed architecture of deep
learning data-flow computation. Dotted-line arrow refers to
the cross-server data flow.

where the nodes represent the computations at layers and
the edges represent the data flowing between the dependent
nodes. In deep learning scenarios, the major data type flow-
ing in the graph are tensors (i.e., multi-dimensional matri-
ces) because most deep learning algorithms are expressed as
mathematical models on matrices. The right side of Figure 1
shows an example data-flow graph expressing a forward
computation on the neural network in the figure from the
raw input to upper layers. Through supporting this data-
flow graph representation for deep learning computation,
frameworks [7, 9, 14, 33, 40] can allow developers to con-
veniently implement variant forms of neural networks that
can be complex.
The training process of a deep neural network can be

time-consuming because the computation needed to learn
complex hierarchical features is complex and often involves
processing large volumes of training data. In order to scale
out the computation, distributed deep learning can be applied
by replicating and partitioning the data-flow graph onto mul-
tiple servers to execute in a data-parallel or model-parallel
fashion. As illustrated in Figure 2, a data-flow graph can be
partitioned with each partition placed on a different server
before the computation is conducted. The data flow between
graph nodes across partitions will be fulfilled through the
underlying communication layer during the computation.
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Figure 3. Example of distributed data-flow computation of
deep learning with data-parallelism in a parameter-server
architecture. Dotted-line arrows correspond to cross-server
data flows. For simplicity and clarity, GenGrad and Apply-
Grad represent the sub-graphs of computing and applying
gradients, respectively.Weight is the tensor representing the
model parameters, which is shared by all workers.

Figure 3 shows an example of distributed deep learning com-
putation with data-parallelism. A data-flow graph is replicat-
ed on two workers and each replica is partitioned among a
worker and a parameter server. Employing such a distributed
data-flow graph model offers convenience and flexibility to
allow not only data-parallelism, but also model-parallelism,
which is critical when the deep learning model size is large.

Deep learning training involves iterative executions over
the data-flow graph for multiple mini-batches of training
data. Therefore, after the data-flow graph is created and
before the computation starts, it is reasonable for a deep
learning framework to take some time to analyze the graph
and optimize the execution. In the graph analysis phase, a
static graph-analysis phase can extract useful high-level in-
formation to be passed to a lower layer and used to improve
runtime efficiency. One example of such information is the
addresses of the tensor data that need to be transferred across
servers. This information can be obtained statically some-
times, because the shapes of some tensors do not change
during the entire computation; e.g., in the case of the tensors
representing the model parameters. The framework can then
arrange the placement of those tensors in memory before
the execution of the data-flow graph. It is therefore feasible
to design an appropriate abstraction for the communication
layer to accept such information to improve its efficiency.

2.2 Remote Procedure Call
Remote Procedure Call (RPC) [8] is a common abstraction for
communication across servers. It allows users to implement
a procedure that can be invoked remotely as if being called
locally. With RPC, users only need to focus on the implemen-
tation of the functional logic of the remote procedurewithout

caring about the underlying communication-related details.
In addition, RPC is often used to pass structured messages
with integrated serialization and deserialization capabilities.
There are many existing designs and (open-sourced) imple-
mentations of RPC [2, 4, 6, 19] from industry and research
communities. They have been extensively applied in many
distributed systems [7, 9, 21, 34, 36].
The RPC abstraction is designed to facilitate the trans-

mission of arbitrary types of messages (in any data schema
or size) at any time point. This flexibility is not particularly
beneficial in the deep learning scenario mainly because the
major data abstraction is the tensor, whose meta-data con-
tains only simple schema with shape and element type infor-
mation. There is an inherent cost associated with providing
this general convenience: it makes hard for the communica-
tion library to be aware, in advance, of which user buffer the
received message should be directly delivered to. Therefore,
a common way is to use a fixed in-library buffer to receive
a message from the operating system layer and then copy
the data to the appropriate user buffer. An in-library buffer
is associated with each channel and should have a limited
size; otherwise, there will be a scalability issue of memo-
ry consumption when the cluster of servers become large.
And also, when a sender wants to transmit a message larger
than the buffer on the receiver, the message has to be split
into multiple fragments with each having some header infor-
mation added for re-assembling at the receiver. This often
require an additional data copy at the sender. The data-copy
overhead is proportional to the message size, and hence can
be significant when message is large. Without re-designing
the abstraction, it is hard, if not impossible, to eliminate such
overhead completely in the communication layer.

2.3 Remote Direct Memory Access
Remote Direct Memory Access (RDMA) is an emerging fast
network technology that allows one server to directly access
the memory of a remote server without involving the operat-
ing system at any endpoint. With the technology maturing
and cost competitive, RDMA has found its way into data
centers and is gaining popularity [26].
The user interface to issue RDMA operations is through

functions called verbs. There are two types of verbs seman-
tics: memory verbs and messaging verbs. The memory verbs
include one-sided RDMA reads, writes, and atomic opera-
tions. These verbs specify the remote memory address to
operate on without involving the remote CPU. The elimina-
tion of CPU overhead at remote side makes memory verbs
attractive. The messaging verbs include the send and receive
verbs, which involve the remote side CPU. Verbs are post-
ed by applications to queues that are maintained inside the
RDMA NIC. Queues always exist in pairs with a send queue
and a receive queue forming a queue pair (QP). Each queue
pair has an associated completion queue (CQ), which the RD-
MA NIC fills in upon completion of verb execution. RDMA
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Figure 4. Overview of the architecture design of the RDMA
memory copy library. QPs are created and grouped peer by
peer and associated with CQs in a round-robin way.

transports can be either reliable or unreliable, and either con-
nected or unconnected (also called datagram). In our work,
we always use reliable connected transport.

RDMA networks provide high-bandwidth and low latency:
NICs with 100 Gbps bandwidth and ∼2µs round-trip latency
are commercially available. The high-bandwidth of RDMA
and its kernel-bypassing nature make any communication
related computation overhead significant. We observe that
removing the extramessage-data copy can evidently improve
communication efficiency. Simply building a general RPC
abstraction over RDMAmakes it hard to avoid the extra data
copy. For example, the message passing mechanism used in
the FaRM RPC [16] employs a fixed ring buffer with each
channel on the receiver side andmay suffer from the problem
described in §2.2.

The one-sided memory read/write semantic of RDMA al-
lows a zero-copy communication across servers as long as
the remote address is known. For deep learning computation,
the data-flow graph analysis can help arrange the in-memory
placement of tensors and provide such information to the
underlying communication layer. We therefore advocate ex-
posing a simple memory-copy interface directly because
tensor is the major data type to be transferred across servers
during deep learning computation.

3 Design
We now present our design for the RDMA device communi-
cation abstraction, the tensor transfer mechanisms, and the
integration with the deep learning data-flow graph analysis.

3.1 RDMA Device Abstraction
Our communication library provides a simple abstraction
for each RDMA NIC as an RDMA device (or device for short

...... 1

Source Tensor

...... 0

Dest Tensor

(Polling flag byte)
One-sided 
RDMA write

Sender 
(with dest tensor address)

Receiver

Figure 5. Transfer statically placed tensor through one-sided
RDMA write.

when there is no confusion). The device provides an interface
to allocate and free a memory region that can be accessed
by other devices remotely. Given a remote device specified
as an endpoint (i.e., IP address and port), users can acquire
a channel from the local device object that connects the lo-
cal device and the remote one. A channel corresponds to
an RDMA QP and provides a memory copy interface for
cross-server data transfer, which takes a pair of local/remote
memory regions and a transfer direction as arguments. The
actual data transfers are performed using the one-sided RD-
MA read/write verbs. To use the memory copy interface,
one has to know the address of the to-be-accessed remote
memory region. The library, therefore, also provides a sim-
ple vanilla RPC mechanism implemented using the RDMA
send/recv verbs for this auxiliary purpose of distributing
remote memory addresses. This address distribution process
is often not on the critical path of the application, and hence
not performance critical. Table 1 summarizes the interfaces
of our communication library.

The RDMA device is configured with the number of CQs
per device and the number of QPs for each connected peer
remote device. The library maintains a thread pool with each
thread polling a specific CQ for completion of RDMA events.
When establishing a connection to a remote peer device, it
evenly spreads the associations of the created QPs with the
CQs in a round-robin fashion. The channel acquiring inter-
face allows users to specify the specific QP that the channel
uses. Through this interface, a multi-threaded workload (e.g.,
the deep learning graph execution runtime) is able to balance
the loads and synchronization cost over the QPs and CQs
to achieve good parallelism and communication efficiency.
Figure 4 shows an overview of this design.

3.2 Transfer with Static Placement
During the graph analysis phase, the shapes of some ten-
sors can be statically decided and will not change during the
entire computation. Examples include those tensors hold-
ing the parameters of the model to be trained. Given this
information, the analysis engine can allocate the memory
regions for these tensors beforehand and fix their placement
during the computation. If the content of such a tensor re-
lies on that of a remote one, its address, which is remotely
accessible, is distributed to the server that holds the remote
upstream tensor before the computation. The sender of the
tensor transfer can then use the memory copy interface to
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Interfaces Description
RdmaDev CreateRdmaDevice(num_cqs, num_qps_per_peer, local_endpoint) Create and initialize an RDMA device associated with

a local host endpoint.
MemRegion RdmaDev::AllocateMemRegion(size_in_bytes) Allocate an RDMA-accessible memory region with

specified size on a local device.
RdmaChannel RdmaDev::GetChannel(remote_endpoint, qp_idx) Get a communication channel connecting to a remote

host endpoint using a specified QP.
void RdmaChannel::Memcpy(local_addr, local_region, remote_addr, Asynchronously copy data between local and remote
remote_region, size, direction, callback) addresses with specified size and transfer direction.

Table 1. RDMA device interfaces.
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Figure 6. Transfer a dynamically allocated tensor through
one-sided RDMA write and read.

write the content of the downstream tensor at the receiv-
er directly during the computation. The receiver needs to
know whether the content of the downstream tensor has
been written in full. This is achieved through introducing a
flag byte at the tail of the tensor memory region. The sender
transfers the tensor content together with the flag byte set.
The transfer is conducted in an ascending address order. The
flag is then the last byte being transferred. Many RDMA
NICs (including the ones we are using) guarantee that the
RDMA writes are performed in an ascending address order
(same as reported in FaRM [16]). So, once the flag byte is
delivered, the entire tensor content must have been written
in full. The receiver periodically polls the flag byte of the
downstream tensor. Once the tensor transfer completes, it
clears the flag for future use and then activates the graph
nodes that depend on this transferred tensor for execution.
Figure 5 illustrates this mechanism. Polling on a receiver has
a lower priority than other ready tasks in order not to block
them and to minimize its impact.

3.3 Transfer with Dynamic Allocation
It is not always the case that tensor placement can be decided
statically. The shapes of the tensors to be transferred across
servers can depend on the training data in each mini-batch it-
eration, and hence can change across different mini-batches.
This is often the case where the deep learning applications

have training datasets with sparse features; e.g., an RNN
model for natural language processing [30] with input se-
quences having variable lengths in different mini-batches,
or a wide-and-deep model used for recommender system-
s [11] with each training sample containing a different set
of features.
For these cases, although the graph analysis engine can-

not determine tensor placement statically, we still follow our
design principle to reduce the communication-related com-
putation overhead in a best effort. We observe that, despite
variations in tensor shapes, the number of dimensions of a
tensor remains unchanged throughout computation. A fixed
tensor-dimension count means that the size of the meta-data
of a tensor is unchanged. With this observation, we adapt
the tensor transfer mechanism as illustrated in Figure 6.

As shown in the figure, the meta-data includes the number
of dimensions, the size of each dimension, the element data
type of the tensor, and the remote address of the tensor
at the sender. The meta-data of the tensor at the receiver
is preallocated and its address is distributed to the sender
beforehand. During the computation, the sender writes the
meta-data at the receiver through the memory copy interface
when the tensor at the sender is ready to use. The receiver
polls the flag byte at the tail of the meta-data. Once it detects
the completion of the meta-data writing, it clears the flag
byte, allocates a new tensor storage in the RDMA accessible
memory region, and issues a remotememory copy to transfer
the tensor data through one-sided RDMA read. Compared
with the case of transferring statically placed tensor, the
mechanism for passing a dynamically allocated tensor incurs
the additional overhead of tensor allocation and meta-data
serialization and transfer.

3.4 RDMA-Aware Graph Analysis
Given the tensor-transfermechanisms across servers through
direct memory access, the data-flow graph analyzer can be
enhanced to collect and provide useful information to make
communication more efficient.

Preallocate data buffers. First, for each tensor to be trans-
ferred over the network, the analyzer needs to decidewhether
its shape can be known statically. This can be achieved
through a static shape inference process: 1) we identify the



EuroSys ’19, March 25–28, 2019, Dresden, Germany Xue and Miao, et al.

initial set of input tensors with static shapes from the pro-
gram directly as those shapes are specified explicitly through
a deep learning framework (e.g., TensorFlow), and 2) we use
the shape-inference functions of graph nodes to infer the
set of output tensors with static shapes recursively from the
static property and shapes of their input tensors. After this
process, all the tensors with static shapes can be identified.
These shapes will remain fixed during the entire compu-
tation. Second, after a graph is partitioned onto different
servers and, on each server, before the sub-graph is execut-
ed, the data buffers of the receiver-side tensors (for those
whose tensor shapes can be statically determined) or their
meta-data buffers (for those whose tensor shapes cannot be
statically determined) are preallocated. The remotely acces-
sible addresses of these buffers are then passed to the servers
holding the upstream tensors that they depend on. The deliv-
ered addresses are then set associatedwith the corresponding
sender-side graph nodes responsible for transferring these
tensors.

On the sender, a memory buffer to be transferred through
RDMA needs to be registered beforehand to the RDMA NIC
to allow its access. This registration process involves OS
kernel actions such as pinning the buffer as non-pageable
and therefore introduces extra overhead. In addition, the
allowed number of registered buffers is bounded by the spe-
cific RDMA hardware. Therefore, simply registering the data
buffer of each tensor on demand when it needs to be trans-
ferred to remote server could introduce significant overhead
and might experience unexpected errors due to hardware
resource limit. A more appropriate way of managing the
RDMA-accessible memory is to preallocate a large enough
memory buffer to register once to RDMA NIC. The size of
the preallocated memory is determined by our graph analyz-
er. A memory allocator is used to manage the preallocated
memory.

Decide tensor allocation site. Normally, a sender of a ten-
sor through RDMA would need to allocate an extra RDMA-
accessible buffer and copy the tensor from the original buffer
to it. To avoid this memory copy, the graph analyzer would
prefer to allocate the RDMA-accessible buffer directly for
the to-be-transferred tensor. One challenge to achieve this
is to find out when a specific tensor is allocated (or its allo-
cation site): the actual storage of an input tensor of a graph
node might not be allocated at the execution of its direct
predecessor node, because some graph nodes may conduct
in-place manipulation on their input tensors, and hence a
tensor buffer may be passed through multiple nodes on a
path in the graph. We therefore propose a dynamic analysis
method to address this.

In order to get the allocation site of the storage of a tensor
that is to be transferred, the graph analyzer instruments the
tensor allocator used in the graph execution runtime. During
the execution of the graph for the first mini-batch iteration,

for each tensor allocation, it records the data buffer address
of the tensor and the information of the corresponding graph
node that invokes this allocation into a map with the tensor
buffer address as the key. This node information includes the
identification of the graph node and the id of the allocation
of this node; e.g., the i th invocation of allocation in the exe-
cution of the node. If the information with the same address
already exists in the map, the new information overwrites
the old one. This way, we always keep the latest information
with the same tensor address. When a graph node transfers
a tensor during the execution, the runtime gets the tensor
buffer address and looks up the map to get the information of
the graph node that allocates the tensor buffer. It then stores
the information of the tensor-allocating graph node into the
set S of memory regions that should ideally be allocated
in the RDMA-accessible region directly. During the graph
execution of the subsequent mini-batches, for each tensor
allocation, the runtime checks whether the executing graph
node exists in set S . If so, it allocates a tensor buffer from
the allocator that manages the RDMA-accessible memory
regions; otherwise, it allocates the tensor buffer from the nor-
mal allocator. This way, the data buffer of a to-be-transferred
tensor, captured in S , is naturally RDMA-accessible without
the need of extra copy.

3.5 GPUDirect RDMA
GPUDirect RDMA is a technology that allows an RDMANIC
to access GPU memory directly, without going through host
memory, thereby offering the opportunity to save memory
copy to GPU. With the design principle and methodology
in our work, applying GPUDirect RDMA is straightforward
because, at user-level, it similarly just needs to allocate a
GPU memory space in a mapped pinned mode through the
CUDA API [1] and register to the RDMA NIC, and the graph
analyzer can decide which tensors need to be allocated in
the same way as described in §3.4.

It is relatively tricky though to poll a value in GPU mem-
ory efficiently. Issuing a GPU kernel for every polling at an
address may incur too much kernel-launch overhead, and us-
ing a kernel function to poll an address repeatedly until the
state becomes ready will waste the precious GPU computing
resources. We therefore always employ the mechanism with
dynamic allocation described in Section 3.3 for tensor trans-
fer through GPUDirect RDMA. Specifically, the meta-data
of a tensor can be maintained in host memory so the polling
only happens at the CPU side, while the actual tensor da-
ta can be stored in GPU memory and transferred through
one-sided RDMA read.

4 Implementation
We implement our techniques in TensorFlow (r1.2) [3], a
popular open-sourced deep learning framework in commu-
nity and industry. Our implementation contains about 4,000
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lines of C++ code, where the RDMA communication library
(using the libibverbs API on Linux) takes about 1,800 lines
and the rest are modifications to TensorFlow including the
graph analyzer. All those changes are transparent to users.
TensorFlow organizes a deep learning computation as a

data-flow graph. Users first build a graph through its high-
level Python or C++ interfaces and then initiate the deep
learning computation through associating the graph with
a runtime session. The graph is composed of tensors and
operators. The operators refer to the computing operations
of the corresponding graph nodes, while the tensors repre-
sent data flowing through the edges connecting the nodes.
Users are also allowed to develop customized operators and
add those into the graph. Unlike the normal computational
operators that are added in graph by users during the graph
build phase, Send and Recv operators, which are used to
transfer tensor data along edges across graph partitions, are
added in the graph by the framework and are transparent to
users.

To implement the mechanisms of transferring tensor data
over RDMA as described in §3, we develop two pairs of cus-
tom operators and introduce an extended scheduling mecha-
nism. For transferring tensors with a static placement, we
implement the RdmaSend and RdmaRecv operators. During
the graph analysis phase, the receiving tensor is preallocated
with RDMA-accessibility and set as a property of RdmaRecv.
This tensor is never freed until the entire computation fin-
ishes, so its address never changes in the entire computation.
The remote-accessible address of the tensor is then passed to
the server that holds the corresponding RdmaSend operator
and set as its property. Once RdmaSend is scheduled to exe-
cute, it directly updates the content of the receiving tensor
through a one-sided RDMA write. There is no need for some
special mechanism to notify RdmaSend that the transferred
tensor has been consumed by RdmaRecv because the next
scheduled execution of RdmaSend is naturally guaranteed to
happen after the consumption of the received tensor due to
the control dependency of the loop in the graph or the execu-
tion sequentiality of multiple mini-batch iterations. Similarly,
we also implement another pair of operators, RdmaSendDyn
and RdmaRecvDyn to support tensor transfer with dynamic
allocation as described in §3.3.
TensorFlow originally supports two types of execution

modes for operators: synchronous and asynchronous. For
both types of operators, once an operator is popped out of
the ready queue to execute, it simply completes its execution
synchronously or asynchronously without the need to be en-
queued into the ready queue again. However, the RdmaRecv
and RdmaRecvDyn need to poll the flag byte in the data or
meta-data buffer of the receiving tensor. If executing totally
away from the scheduling mechanism, it either suffers from
busy loop wasting processor resources or long latency due
to periodic sleep. We therefore introduce a new execution
mode of operator called polling-async. The execution of this

Type Benchmark Model size
(MB)

Variable
Tensor#

Computation
time (ms)

CNN
AlexNet 176.42 16 7.61 ± 0.29
Inception-v3 92.90 196 68.32 ± 0.73
VGGNet-16 512.32 32 30.92 ± 0.19

RNN LSTM 35.93 14 33.33 ± 0.24
GRU 27.92 11 30.44 ± 0.32

FCN FCN-5 204.47 10 4.88 ± 0.28
Table 2. Deep learning benchmarks (Note: the LSTM and
GRU are configured with hidden vector size of 1024 and
step size of 80; the FCN-5 consists of 3 hidden layers with
dimension of 4096 and two layers of input and output)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.
01  0.

1  1  10  10
0

 10
00

 10
00

0

 10
00

00

 1x
10

6
C

C
D

F

Tensor size (KB)

Figure 7. The complementary cumulative distribution of
variable tensor sizes

type of operator contains two phases. When executing in
the polling phase, the scheduler checks whether the polling
succeeds. If not, it simply re-enqueues this operator into the
tail of the ready queue; otherwise, it changes the execution
mode of the operator to asynchronous and reschedules the
execution. This way, we reduce the polling overhead when
there are other ready operators to execute.

5 Evaluation
We evaluate our techniques on a cluster that consists of 8
servers. Each server is equippedwith dual 2.6GHz Intel Xeon
E5-2690v4 14-core CPU, 512GB memory, 2 NVIDIA Tesla
P100 GPU, and a 100Gbps InfiniBand (IB) network adapter
(Mellanox MT27700) for interconnection. All the servers are
installed with Ubuntu 16.04, CUDA 8.0, and cuDNN 6. As
GPUDirect is only available for some GPUs with certain sys-
tem restrictions like NIC must under the same PCIe switch,
most of our experiments are evaluated without GPUDirect
except the last experiment in §5.2. TensorFlow (since ver-
sion r1.0) supports RDMA in the way of wrapping an RDMA
communication layer with the gRPC abstraction, and hence
has to maintain private message buffers and incur an extra
memory copy. It also relies on some IB-specific features and
can only run on an IB cluster, while our RDMA mechanism
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can also work with RoCE (RDMA over Converged Ethernet)
network adapters. In our experiments, we empirically set 4
CQs per device and 4 QPs for each connection, through using
a sufficiently large number to achieve good parallelism and
communication efficiency following the guideline in [20].

Our extensive performance evaluation uses a set of repre-
sentative deep learning benchmarks, including AlexNet [24],
Inception-v3 [31], VGGNet-16 [29], LSTM [18], GRU [13]
and FCN-5, covering convolutional neural network (CNN),
recurrent neural network (RNN), and fully connected neural
network (FCN). Table 2 lists some characteristics of these
benchmark workloads. The model size is the sum of the sizes
of all the variable tensors in a neural network, which corre-
sponds to the communication volume between workers and
parameter server processes in each mini-batch. The local
computation time represents the average execution time of
processing one sample data in the single-server setting. We
therefore use the model size of each benchmark to character-
ize its network load and use the local computation time to
characterize its computation complexity. These benchmarks
cover both computation-intensive and network-intensive
workloads. For example, the Inception-v3 model is a typical
computation intensive workload, while the VGGNet-16 is
mainly bottlenecked in network because each worker needs
to transfer more than 1 GB (2×512.32MB)model and gradient
data in each mini-batch. Among these benchmarks, the sizes
of variable tensors vary from tens of bytes to hundreds of
megabytes. In many cases, the existence of large tensors may
substantially influence communication behavior. Figure 7
shows the distribution of number of tensors with different
tensor sizes in our benchmarks. As shown in the figure, more
than 50% of the variable tensors are larger than 10KB, and
more than 20% are even larger than 1MB. In terms of the
total capacity, the tensors that are larger than 1MB occupy
96% of the capacity among all tensors.

We conduct most of the experiments on synthetic datasets
that are randomly generated and mainly used for evaluating
the execution time. To demonstrate the effect of our tech-
niques in real scenarios, we also evaluate the convergence
of 3 end-to-end applications on a real-world datasets, which
includes a translation task (Seq2Seq) using the sequence-to-
sequence model [30] on WTM’10 French-English machine
translation corpus [5] containing about 20 GB text data in
total, an image recognition task (CIFAR) using the CIFAR-10
model on its public dataset [23] consisting of 60,000 32×32
colour images in 10 classes, and an RNN based sentence
embedding task (SE) used in our real production. We use a
private production dataset containing about 3.7 GB text data
in this model.
All performance numbers with respect to throughput

(mini-batches/second) in our experiments are calculated by
averaging among 5 runs with each processing 100 mini-batch
iterations. In all cases we observed very little variation, thus
we omit the error bars in all figures.
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Figure 8. The performance comparison on a send/receive
micro-benchmark between two servers.

5.1 Performance on Micro-benchmark
In order to understand the direct benefit of our design on
system performance, we first evaluate our tensor transfer
mechanism over RDMA using a micro-benchmark.
We set up two servers only to perform a tensor transfer,

so as to compare our network performance with gRPC over
TCP and gRPC over RDMA. The receiver also performs a
lightweight reduce_max operator to consume the passed
tensor. Figure 8 shows the efficiency of transferring tensors
with different sizes.We first compare our RDMA-basedmech-
anism (i.e., RDMA.zerocp) with the TensorFlow’s original
gRPC-based solutions, including both the gRPC over TCP
(i.e., gRPC.TCP) and the gRPC over RDMA (i.e., gRPC.RDMA).
As shown in the figure, our mechanism can outperform both
of them significantly. For example, RDMA.zerocp can im-
prove the speed by 1.7× to 61× over gRPC.TCP for different
message sizes. For gRPC.RDMA, even though it adopts an
RDMA protocol under gRPC, it still needs to conduct data
serialization/de-serialization and data copy between RDMA
pinned buffer and tensor memory on both the sender and
the receiver. In contrast, our RDMA-based mechanism can
completely avoid any data copy and serialization overhead,
and hence achieves 1.3× to 14× performance improvement
compared to gRPC.RDMA for different message sizes. Note
that, there is a missing data point for gRPC.RDMA at mes-
sage size of 1GB, because TensorFlow with gRPC.RDMA will
crash when the transferring data size is larger than 1GB. To
evaluate the memory copy overhead, we manually turn off
our graph analysis optimization, so that the tensor data in
the sender is unable to be pre-allocated as RDMA-accessible.
To perform tensor transfer, the RdmaSend operator has to
allocate a new RDMA-accessible buffer, copy the tensor into
it, and then conduct the actual RDMA write. The curve of
RDMA.cp in Figure 8 demonstrates the performance of this
case. As it shows, RDMA.zerocp outperforms the RDMA.cp
by 1.2× to 1.8× for different message sizes. Note that this
improvement is far less than the gap between gRPC.RDMA
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and RDMA.zerocp, because RDMA.cp mechanism only in-
volves the data copy on the sender and does not incur any
data serialization/de-serialization overhead.

5.2 Performance on Deep Learning Benchmarks
This section evaluates our system on real deep learning ap-
plications. Benchmarks listed in Table 2 are evaluated on
synthetic data for performance, while the 3 aforementioned
applications on real datasets are evaluated for convergence.
By default, experiments are configured as running in dis-
tributed settings with data-parallelism, where each machine
runs a worker process and a parameter server process. Dur-
ing execution, each worker executes a data-flow graph repli-
ca on a portion of training data. The variable tensors are
shared across workers and are placed in parameter servers
in a round-robin fashion. The worker runsmultiple iterations
until some convergence condition is satisfied or a maximum
iteration number is reached. In the following discussion, un-
less stated explicitly, we always compare our fully-optimized
RDMA mechanism with other alternative solutions.

Performance. We run the 6 deep learning benchmarks with
a synthetic dataset on the same cluster. To understand better
the computation and communication behavior, our synthet-
ic datasets are generated on the fly, which can avoid the
overhead of data loading from disk. In deep learning appli-
cations, the mini-batch size is a critical hyper parameter
that affects both the convergence rate and the computation
time. In distributed training, we can amortize the communi-
cation overhead by using large mini-batch size, because it
can increase the local computation time. However, a large
mini-batch size is harmful to convergence, because it reduces
the model synchronization frequency across different work-
ers [28]. In practice, the optimal setting is tuned by users,
and searching for best mini-batch size is out of the scope for
this paper. In our experiments, we evaluate each benchmark
with mini-batch sizes ranging from 1 to 64 (128 for some).
Note that, these numbers are mini-batch sizes of a single
worker. The actual mini-batch size across all workers needs
to further multiply the number of workers.

Figure 9 plots the performance of TensorFlow with gRPC
and with our RDMA mechanism. In general, the average im-
provements from using RDMA against gRPC.RDMA range
from 117% up to 145% for VGGNet-16. The improvements
observed for other benchmarks reach 169% for AlexNet, 65%
for Inception-v3, 151% for FCN-5, 118% for LSTM, and 69%
for GRU. And the improvements over gRPC.TCP are much
greater; for example, 25× for VGGNet-16. For these bench-
marks, the graph analyzer can statically infer all the shapes
of transmitted tensors, thus the transmissions are using the
static-placement mechanism.

As shown in the figure, among these benchmarks, AlexNet,
VGGNet-16, and FCN-5 get relatively more significant im-
provements from RDMA than others, because they are main-
ly bottlenecked at communication. Their execution time is
stable under different mini-batch sizes, because the volume
of transferred data (i.e., the model size) is irrelevant to the
mini-batch size and the GPU’s massive computing threads
can complete large mini-batches within the same time as
processing the small ones. However, for other benchmarks
like the Inception-v3, LSTM, and GRU, when we increase
the mini-batch size to larger than 32, their local computation
time also increases and becomes dominant in the overall
execution time. In those cases, the gaps between gRPC and
our RDMA decrease as expected.

Convergence. To demonstrate the performance gain in re-
al scenarios, we further evaluate three end-to-end train-
ing tasks, including a translation task (Seq2Seq) using the
sequence-to-sequence model [30], an image recognition task
(CIFAR) using the CIFAR-10 model [23] and a sentence em-
bedding task (SE) based on two RNN models. We use per-
plexity value for Seq2Seq model and loss value for others
to measure the convergence quality. For each task, we ran-
domly partition their dataset into 8 workers. Each worker
continuously loads the sample data from local disk in paral-
lel with the training process. For each model, we compare
gRPC.TCP, gRPC.RDMA, and our RDMA mechanism on the
same training dataset until convergence.

Figure 10 plots the convergence curves for the threemodel-
s with different communicationmechanisms. For the Seq2Seq
model in Figure 10(a), it takes about 220 minutes to converge
to perplexity under 20 with gRPC.TCP. However, when us-
ing our RDMA mechanism, it takes only 66 minutes, about
3× speedup. Even comparing to gRPC.RDMA, our RDMA
mechanism achieves 53% performance improvement. Similar
results can be observed in the CIFAR model (Figure 10(b))
and the SE model (Figure 10(c)). For the CIFAR model, our
RDMA mechanism can speed up convergence by 2.6× com-
pared to gRPC.TCP, and 18% to gRPC.RDMA. Finally, for
the SE model, we fail to collect the results of gRPC.RDMA
because TensorFlow crashes when using gRPC.RDMA. If just
using gRPC.TCP, the SE model can converge to loss value
of 4.5 within 185 minutes. However, our RDMA mechanism
takes only about 100 minutes to converge to the same point,
which speeds up the training process by 85% in total.

Scalability. Scalability is one of the most important metrics
for distributed training. We evaluate the scalability of Ten-
sorFlow with both our RDMA mechanism and the original
solutions on all the deep learning benchmarks with synthetic
datasets. We set mini-batch size to 32 for all experiments.
The scalability of each benchmark is mainly determined

by its computation and communication behavior. Figure 11
shows the scalability results of three representative work-
loads among all the benchmarks. We can see that different
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(b) Inception-v3
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(c) VGGNet-16
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(d) LSTM
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Figure 9. Comparisons with gRPC-based solutions in TensorFlow.

benchmarks have very different scalability patterns. For the
LSTM and Inception-v3, because they are computation in-
tensive at mini-batch size 32, we can always observe good
scalability no matter whether we use our RDMA mechanism
or gRPC. For example, the speedup on 8 servers for both
RDMA solutions on the two benchmarks are larger than 7×
against their single server cases (still involving communi-
cation between workers and parameter server processes on
the same machine). Even in those cases, our RDMA remains
much better than gRPC based RDMA in terms of throughput
(i.e., 98% higher for LSTM and 12% for Inception-v3). For
VGGNet-16, because it is a communication intensive appli-
cation, its scalability is highly determined by the underlying
network efficacy. In this case, our RDMA can still get 5.2×
speedup against its single server, consistently remains more
than 140% faster than gRPC based RDMA on different scales.

For each of these benchmarks, we alsomeasure the through-
put of its pure local implementation (the “Local” line in Fig-
ure 11), which does not involve any communication over-
head. As shown in the figure, for the gRPC.RDMA case, the
speedups on 8 servers relative to the local implementations
for LSTM and Inception-v3 are 1.5× and 6×, respectively. It
needs 4 servers to outperform the local implementation for
LSTM and 8 servers for VGGNet-16 due to its much more
serious communication bottleneck. In contrast, with our RD-
MA, all the three distributed benchmarks can outperform
the local implementations with only 2 servers. The speedups
on 8 servers are 5×, 7.9×, and 4.3× for the three benchmarks,
respectively.

MemoryCopyOverhead. Wealso evaluate the performance
gain of removing the sender side memory copy, as described
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Figure 10. Convergence of real applications on TensorFlow
with different communication mechanisms.

in Section 5.1, in deep learning benchmarks. We manual-
ly turn off the graph analysis phase so as to skip the opti-
mization for zero copy, and compare its performance with
the optimized one. Figure 12 shows the average mini-batch
time of each benchmark with (or without) memory copy. In
general, for different workloads, the zero-copy optimization
can bring up to 21% performance improvement with mini-
batch size of 8. However, for some benchmarks such as the
Inception-v3 and GRU, the performance gain is relatively s-
mall. This is mainly due to two factors. First, as we explained
before, these benchmarks are mostly computation intensive,
which could benefit little from network related optimization.
Second, from the result of micro-benchmark in Section 5.1,
the gain of zero copy is more significant for larger tensor
size, however, the Inception-v3 includes many small tensors:
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Figure 11. Scalability of TensorFlow with gRPC-based solu-
tions vs. RDMA.

the model contains 196 variables, but the total model size is
only 92.9MB.

GPUDirect Support. Finally, we evaluate the performance
with GPUDirect RDMA enabled for different applications,
as shown in Table 3. After enabling GPUDirect, our RDMA
further improves the performance by up to 54%. Improve-
ments vary from application to application, similar to what
we observed in previous experiments.

6 Related Work
Systems leveraging RDMA. With the advent of the emerg-
ing RDMA technology, a large body of research has been
done on improving the performance of various distributed
systems to leverage its low latency and high bandwidth. A
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Benchmark RDMA RDMA+GDR Improv.
AlexNet 178.5 135.2 32%
FCN-5 157.0 101.9 54%
VGGNet 690.1 610.4 13%
Inception 172.5 171.9 0.4%
LSTM 84.4 68.1 24%
GRU 62.3 52.6 19%

Table 3. The average minibatch time (ms.) and improve-
ments with GPUDirect RDMA(GDR) in deep learning bench-
marks. (8 workers)

series of efforts [16, 19, 26, 32, 35] target to optimize key-
value storage systems, while some others focus on improving
the throughput of distributed transaction processing system-
s [10, 17, 35]. FaRM [16] uses one-sided RDMA reads for
key-value lookups while employing a messaging primitive
for updates. This messaging mechanism uses a fixed ring
buffer on the receiver side to hold received messages, and
hence may bring extra overhead of copying messages to the
application buffers. In addition, large messages may have to
be split on the sender side and re-assembled on the receiver
side due to the limited size of the ring buffer, which intro-
duces more copying overhead. HERD [19] embraces an RPC
abstraction for key-value lookup to avoid multiple remote
accesses on a hash-table structure. Kalia et al. [20, 21] further
improves it by considering lower-level factors in the RDMA
hardware and optimizing it for the all-to-all cases used in
transaction processing. All these research efforts target the
scenarios dominated by small messages, where latency is the
major objective of optimization.
Grappa [27] and GraM [37] explore the use of RDMA

to accelerate distributed graph computation. In graph pro-
cessing, it is appropriate to use RPC to batch many small
random remote accesses caused by the complex and sparse

graph structure. However, in the deep learning scenarios,
a common pattern is to access dense, often relatively large,
tensors.

GPUNet [22] proposes a socket-like abstraction over RD-
MA, which allows GPU kernel functions to communicate
directly through network. Their design targets scenarios of
general distributed computations on GPUs. It is interesting
to look at how to integrate this level of “directness” into a
dataflow-based deep learning framework with techniques in
our work.

Distributedmachine learning systems. Many systems have
been designed to support efficient distributed computation of
traditional machine learning algorithms, which usually em-
ploy shallow model structure and do not necessarily express
their computation as data-flow graph, such as Petuum [39]
and Parameter Server [25]. These shallow model structures
often lead to sparse matrix computations, which share the
similar patterns to graph processing [38]. These systems s-
cale out by employing a parameter server architecture, which
uses a set of servers to manage shared state that is updated by
a set of parallel workers. This parameter server architecture
can also be used to support some distributed deep learn-
ing frameworks, such as DistBelief [15], Project Adam [12],
MxNet [9], and so on. Although these frameworks, unlike
TensorFlow, only use data-flow graph to represent local com-
putation at each worker, the principle and methodology in
our work can also be applied. For example, as long as the
data transmitted in these frameworks has a dense structure,
it is straightforward to leverage our techniques to improve
communication efficiency and scalability further.

7 Conclusion
The emerging deep learning workloads and network tech-
nologies such as RDMA have prompted us to rethink the
widely used RPC abstraction for network communication.
We observe that the abstraction does not allow application-
level information to be passed to the network layer for opti-
mizations, leading to unnecessary additional memory copy
and significant performance penalty. By designing a simple
“device”-like interface, along with a combination of static
analysis and dynamic tracing , we have enabled cross-stack
optimizations for general deep neural network training to
take full advantage of the underlying RDMA capabilities,
leading to up to almost an order of magnitude speedup for
representative deep learning benchmarks over the default
RPC library and up to 169% improvement even over an RPC
implementation optimized for RDMA.
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