
48

Design and Evaluation of an RDMA-aware Data

Shuffling Operator for Parallel Database Systems

Feilong Liu Lingyan Yin Spyros Blanas

The Ohio State University

{liu.3222, yin.387, blanas.2}@osu.edu

Abstract

The commoditization of high-performance networking has

sparked research interest in the RDMA capability of this

hardware. One-sided RDMA primitives, in particular, have

generated substantial excitement due to the ability to directly

access remote memory from within an application without

involving the TCP/IP stack or the remote CPU. This paper

considers how to leverage RDMA to improve the analytical

performance of parallel database systems. To shuffle data

efficiently using RDMA, one needs to consider a complex

design space that includes (1) the number of open connec-

tions, (2) the contention for the shared network interface,

(3) the RDMA transport function, and (4) how much mem-

ory should be reserved to exchange data between nodes dur-

ing query processing. We contribute six designs that capture

salient trade-offs in this design space. We comprehensively

evaluate how transport-layer decisions impact the query per-

formance of a database system for different generations of

InfiniBand. We find that a shuffling operator that uses the

RDMA Send/Receive transport function over the Unreliable

Datagram transport service can transmit data up to 4× faster

than an RDMA-capable MPI implementation in a 16-node

cluster. The response time of TPC-H queries improves by as

much as 2×.

1. Introduction

Fast networking is no longer exclusive to high-end super-

computers. Database servers today ship with 10Gbps Eth-

ernet and are commonly upgraded to 56Gbps FDR Infini-

Band, while 100Gbps EDR InfiniBand devices have ap-

peared in the higher-end segment of the server market. High-

performance network protocols such as InfiniBand, RoCE

and iWARP offer low-latency, high-bandwidth communica-

tion and provide remote memory access (RDMA) capabil-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064202

ities that allow applications to directly access memory in

remote computers.

Parallel database systems can use either message-passing

mechanisms or shared memory abstractions for data trans-

fer. Message-oriented communication is cooperative: The

receiver initiates the communication and specifies a location

in its memory space that will be changed; then the sender

determines what to change in the receiver’s memory space

and completes the data transfer. A shared-memory abstrac-

tion removes this synchronization hurdle by allowing one

of the two sides to remain completely passive. One-sided

communication primitives (such as RDMA Read) have thus

generated substantial research excitement. At the algorith-

mic level, recent work has proposed join algorithms that use

RDMA [3, 11, 12, 36]. At the systems level, recent work has

redesigned the database kernel for fast networks for analyti-

cal [37], transactional [6, 43] and hybrid workloads [21].

Database systems architects, however, prefer unobtru-

sive implementations that neither modify the database ker-

nel, nor delegate control of memory and communication

management to libraries such as MPI [25], Accelio [1], or

rsocket [39]. This paper designs and evaluates a bespoke

data shuffling operator for analytical query processing in

parallel database systems that exchanges data between query

fragments via RDMA operations.

The paper first introduces the communication endpoint

abstraction to decouple the mechanics of data transmis-

sion from the data shuffling operator. Different endpoints

can transmit data either through the RDMA Send/Receive

message-passing abstraction or through the RDMA Read

shared-memory abstraction. This abstraction is compatible

with the reliable RDMA transport service that offloads com-

munication management to hardware and guarantees mes-

sage delivery, as well as unreliable communication that re-

quires error handling and flow control in software. We as-

sume a network that is lossless under congestion but may

deliver packets out of order, such as InfiniBand. The en-

abling insight is that database systems can uniquely benefit

from the Unreliable Datagram transport service because re-

lational algebra operators are set-based. Hence, it often suf-

49

fices to count the number of messages that were transmitted

without storing them in a re-order buffer.

We contribute six designs of the data shuffling operator

that represent different trade-offs between (1) the number

of open connections, (2) the contention for the shared net-

work interface, (3) the RDMA transport function, and (4)

how much memory should be reserved to shuffle data be-

tween nodes during query processing. We adopt the popular

pull-based operator interface to permit database systems im-

plementors to use the proposed techniques without radically

redesigning their existing analytical processing engines. We

have open-sourced our prototype implementation for further

scrutiny and research by the community.

Our experimental evaluation compares the performance

of the six designs for cluster sizes up to 16 nodes. We evalu-

ate our algorithms on 56Gbps FDR InfiniBand and the newer

100Gbps EDR InfiniBand. We find that using the RDMA

Send/Receive message-passing abstraction over an unreli-

able transport layer achieves robust performance across all

configurations, despite the overheads of coordination, flow

control and error handling in software. Overall, the choice

of the shuffling algorithm affects throughput by as much as

5×. The data shuffling operator that is tailored to database

processing outperforms MVAPICH [25], an RDMA-capable

MPI implementation, by as much as 2× for TPC-H queries.

To the best of our knowledge, this is the first paper that

demonstrates that architectural decisions about the transport

layer (as exposed via RDMA) can significantly impact the

analytical performance of a parallel database system.

2. Background

In this section, we first introduce the data shuffling in par-

allel database systems and then we give an overview of the

Remote Directory Memory Access (RDMA) capability of

modern networks.

2.1 Data shuffling in parallel database systems

Database systems internally convert a SQL statement into an

executable query plan. The query plan is a tree of operators

that synthesizes individual algorithms, such as sort, join,

etc. to produce the correct answer. The pull-based execution

model [13] is a widely used abstraction to execute query

plans in database systems. In this model, each algorithm is

represented as an operator that implements a NEXT function

which will return (“pull”) data to the parent node. Each

operator is vectorized and returns a batch of tuples in the

Figure 1. Example of a parallel, vectorized pull-based

pipeline. Every worker thread passes its ID to the next() call

to access thread-specific operator state and output.

NEXT function call [5, 20]. Figure 1 shows an example of a

pipeline with parallel, vectorized pull-based operators.

In a parallel database system, the query plan is divided

into query fragments which are replicated across the clus-

ter. Different query fragments are connected with shuffling

operators (also known as exchange operators in the Gamma

system [7]). The shuffling operator is the only operator that

will transmit and receive data over the network. Slow net-

works can be a bottleneck for parallel database systems [33]

and data shuffling has been shown to be a significant con-

tributor to the end-to-end query response time [2, 3, 37].

2.2 RDMA overview

Remote Direct Memory Access (RDMA) allows applica-

tions to directly access remote memory. One needs to pin

a page in physical memory and register it with the network

adapter before accessing it through RDMA operations. We

use the InfiniBand verbs interface (ibv *) throughout the pa-

per. The IB verbs interface is available either natively or

through emulation for InfiniBand, RoCE, and iWARP.

2.2.1 RDMA transport functions

Before communicating over RDMA, one first creates and

initializes a Queue Pair (QP). A Queue Pair consists of a

Send Queue (SQ) and a Receive Queue (RQ), and is asso-

ciated with a Completion Queue (CQ). The depth of these

queues is limited by the hardware. Communication requires

posting Work Requests (WRs) to the Queue Pair. Work Re-

quests consist of a pointer to registered memory and a re-

quest, which can be Send, Receive or Read. Work Requests

are processed asynchronously. When a Work Request is ser-

viced, the network adapter populates the associated Com-

pletion Queue with a completion event. The application then

retrieves completion events from the Completion Queue and

can safely reuse the memory that each event points to.

The RDMA Read request is a one-sided communication

primitive that allows the data sender to remain completely

passive. The receiver will read the data from the remote node

by posting an RDMA Read request into the Send Queue. The

request specifies the remote address of the data to read from

and a local buffer to store the data into. The network adapter

asynchronously performs the remote read, populates the lo-

cal buffer and posts a completion event to the Completion

Queue.

RDMA Send and Receive are used in two-sided commu-

nication. The receiver first posts a Receive Work Request

into the Receive Queue that points to a free memory buffer.

This free buffer will be used to store the data from a Send

request. The sender follows and posts a Send Work Request

to the Send Queue that points to the buffer to be transmit-

ted. When the Send request is received, it will be matched

and consume one Receive request. The application needs to

ensure that there are sufficient Receive requests in the Re-

ceive Queue to match all incoming Send requests, else Send

requests will be dropped.

50

Figure 2. RDMA design space for data shuffling algorithms.

2.2.2 RDMA transport service types

Our design considers two transport service types for RDMA:

Reliable Connection (RC) and Unreliable Datagram (UD).

The Reliable Connection service is connection-oriented.

Packets sent over the Reliable Connection service will be

acknowledged and are guaranteed to be delivered once and

in order. The Reliable Connection service supports the Send,

Receive and Read transport functions. The maximum mes-

sage size in Reliable Connection transport is hardware-

specific and can be as large as 1 GiB. Because Reliable Con-

nection is connection-oriented, each Queue Pair can only

communicate with exactly one other Queue Pair. Hence,

with the Reliable Connection service point-to-point commu-

nication between n nodes requires Θ(n2) Queue Pairs.

The Unreliable Datagram service is connectionless and

does not acknowledge the delivery of packets. Packets may

thus be dropped or delivered out of order. The Unreliable

Datagram service only supports the two-sided Send and Re-

ceive operations. The maximum message size in Unreliable

Datagram transport is 4 KiB. Because the Unreliable Data-

gram service is connectionless, one Queue Pair can commu-

nicate with any other Queue Pair. Thus, with the Unreliable

Datagram service, point-to-point communication between n

nodes will require Θ(n) Queue Pairs only.

2.2.3 Programming interface

The first step for an application to use RDMA is to cre-

ate Queue Pairs using the ibv create qp() function, regis-

ter the memory, exchange routing information and build the

connections between Queue Pairs. After building the con-

nection, the process uses RDMA verbs to issue RDMA re-

quests. In particular, ibv post send() is used for RDMA Read

or RDMA Send to post requests to the Send Queue, and

ibv post recv() is used for RDMA Receive to post requests

to the Receive Queue. An RDMA Send request specifies the

buffer which contains the data to be sent, while RDMA Read

and RDMA Receive requests specify the buffer which will

be used to store the received data. These buffers cannot be

reused after they have been posted. The requests will be then

processed by the hardware, which will generate a completion

entry in Completion Queue when the operation finishes. The

application retrieves completion entries by polling the Com-

pletion Queue using ibv poll cq(). The completion entry in-

forms the application which RDMA request has completed

so that the corresponding buffer is reused.

3. Design trade-offs for RDMA data transfer

Different combinations of RDMA transport service types

and transport functions pose different challenges in imple-

menting RDMA-aware data shuffling algorithms. A sum-

mary of the design space is shown in Figure 2, in which we

classify the design choices into three dimensions. Note that

not all the points in the space are permissible; in particular,

the Unreliable Datagram transport service only supports the

Send/Receive transport functions.

1. Number of QPs per node: Choosing the appropriate

number of Queue Pairs (QPs) per node is a trade-off between

hardware resource consumption and parallelism. As QP data

is cached in the Network Interface Card (NIC), the NIC will

run out of space if there are too many Queue Pairs per node.

Prior work [8] has shown that this can degrade performance

by up to 5×. At the same time, more QPs means more

concurrency, as there is less contention between threads.

Assume that a cluster has n nodes and t CPU cores per

node and that one allocates each thread to a separate CPU

core. With the Reliable Connection transport service, each

QP can only communicate with one other QP. For point-to-

point communication, at minimum n connections per node

are needed. This design assumes that all threads will share

one QP when communicating with a specific node, which

may cause thread contention. If each CPU core uses a dis-

tinct set of QPs to communicate to other nodes to avoid

contention, n× t connections per node are needed for point-

to-point communication.1 This can easily overflow the NIC

cache in larger clusters. With the Unreliable Datagram trans-

port service, a QP can communicate with any other QP.

Point-to-point communication between all n nodes is possi-

ble with just one queue pair per node; the QP will be shared

by all CPU cores regardless of the destination. Thread con-

tention can be eliminated by using t connections per node.

2. The message size for RDMA communication. Choos-

ing the message size for RDMA communication requires a

delicate balance between memory consumption and commu-

nication efficiency. For the Unreliable Datagram transport

service, the maximum message size is the MTU (which is 4

KiB in many platforms, including our own). With the Reli-

able Connection service, the maximum message size can be

as high as 1 GiB per the InfiniBand specification. A smaller

message size means that applications should post more re-

quests to transmit the same volume of data. Thus, small mes-

sages lead to more CPU overhead during communication.

However, large message sizes require the application to

pin and register substantially more memory for RDMA com-

munication. In order to overlap communication with com-

putation, 2× n message buffers are needed to communicate

with any node in a cluster with n nodes. If one uses the

extreme setting of 1 GiB in a 16-node cluster, at least 32

1 Note that n× t2 connections per node are needed if one wants to allow

arbitrary communication between any two CPU cores in the cluster. We do

not consider this communication pattern in this paper.

51

GiB memory should be allocated for communication in each

node—which may be beyond what a parallel database sys-

tem can comfortably allocate to a single query fragment.

3. Overhead of communication. Different RDMA trans-

port service types and functions pose different synchroniza-

tion requirements and thus have different overheads.

Error handling: The Reliable Connection transport ser-

vice guarantees the ordered and reliable delivery of every

message. This leads to more traffic in the network but a sim-

pler algorithm, as every packet that is transmitted requires

an acknowledgment. The Unreliable Datagram transport ser-

vice sends no acknowledgement packet, which leads to less

traffic in the network. However, the delivery of the message

is unordered and unreliable—the application needs to per-

form error handling and carefully handle state transitions

despite packets arriving out of order. These considerations

complicate the design of RDMA-aware algorithms.

Synchronization and flow control: RDMA Send and

RDMA Receive are two-sided verbs. The application is

responsible for posting an RDMA Receive request on the

receiving side before an RDMA Send request arrives, else

the RDMA Send request will be dropped. Coordination is

needed to tally the transmitted messages and continuously

communicate the number of posted Send and Receive re-

quests between the sender and the receiver.

RDMA Read is a one-sided verb. During the communi-

cation, the sender remains passive while the receiver posts

the RDMA Read request. The coordination challenge is to

ensure that the passive side (the sender) does not read mem-

ory that is currently being modified. Coordination is needed

to inform the sender when the buffer space can be safely re-

claimed to be overwritten.

RDMA Write is another one-sided verb that shares many

technical similarities to RDMA Read, such as that both re-

quire a reliable transport and allow for messages up to 1 GiB

big. Both RDMA Read and RDMA Write have been used in

prior work [8, 28, 43]. This paper uses RDMA Read as it is

semantically closer to the pull-based model (see Figure 1)

and is thus more intuitive to implement.

4. RDMA-aware data shuffling algorithms

This section describes high-performance data shuffling al-

gorithms that use InfiniBand verbs directly from user space

and bypass the operating system’s networking stack. Sec-

tion 4.1 introduces the transmission group abstraction to

support the repartition, multicast and broadcast data trans-

mission patterns. Section 4.2 introduces the communication

endpoint that hides RDMA-specific complexities from other

components, and Section 4.3 presents the SHUFFLE and RE-

CEIVE operators. Section 4.4 describes implementations of

the communication endpoint that use different RDMA trans-

port functions and service types. Finally, Section 4.5 enu-

merates all algorithms and summarizes their properties.

(a) Repartition

G=
{

{B},{C},{D}
}

(b) Multicast

G=
{

{B,C},{D}
}

(c) Broadcast

G=
{

{B,C,D}
}

Figure 3. The transmission group abstraction encapsulates

the repartitioning, multicast and broadcast data transmission

patterns in database systems. The arrows show the pattern

when node A transmits to the first transmission group G[0].

4.1 Supported data transmission patterns

The communication pattern during relational query process-

ing is dynamic as data transfers may be issued to one or mul-

tiple recipients. Our RDMA-aware shuffling algorithms sup-

port the repartition, multicast and broadcast patterns through

the transmission group abstraction. Nodes can be arbitrarily

assigned to zero, one or more transmission groups. Figure 3

shows the three data communication patterns in a 4-node

cluster. When the transmission group G contains singletons,

as in Figure 3(a), node A will repartition the data. Figure 3(b)

shows a multicast pattern, where data sent from A to trans-

mission group G[0] will reach both B and C. When G con-

tains a single set with every other node in the cluster, as in

Figure 3(c), node A will broadcast data to the entire cluster.

4.2 The communication endpoint abstraction

InfiniBand imposes unique design constraints for different

combinations of transport modes and communication verbs.

In addition, initializing the communication is more involved

than setting up a TCP/IP socket, as one needs to pin and

register memory with the network adapter and then build the

RDMA connection. The time to setup an RDMA connection

has been shown to be three orders of magnitude greater

than TCP/IP [10]. We introduce the communication endpoint

abstraction in order to hide such transport-level intricacies

from the high-level communication logic.

A communication endpoint consists of RDMA-specific

resources and data transmission logic. Every endpoint that

participates in a query plan is assigned a unique integer for

identification. (This identifier is used similarly to a port and

address pair in a TCP/IP connection.) Implementations of

the communication endpoint conform to the same interface,

but support different RDMA transport functions and service

types. All functions of an endpoint are thread-safe. The end-

point owns and registers the memory for RDMA operations

and is responsible for managing this memory.

The SEND endpoint transmits data using the following

interface:

• SEND (void* buf, int[] dest, int state)

This function schedules to transmit the buffer buf to the

endpoints in the dest array. The buffer cannot be used

after SEND returns. The binary parameter state signals if

this is the last buffer to be sent (Depleted) or more data

is available (MoreData). SEND does not block.

52

(a) Single endpoint (SE). (b) Multi-endpoint (ME).

Figure 4. Configurations for the SHUFFLE operator.

• void* buf ← GETFREE()

This function returns an RDMA-registered buffer buf

that can be used in a subsequent SEND call. GETFREE

may block if all transmission buffers are in use.

The RECEIVE endpoint has the following interface:

• <int state, int src, void* remote, void* local>← GETDATA()

This function returns data in the RDMA-registered trans-

mission buffer local. The binary variable state denotes if

this is the last buffer from this endpoint; src is the unique

identifier of the endpoint which sent this buffer; remote

is the address of this buffer in the remote endpoint. (See

Section 4.4.3 for more details on how remote is used.)

GETDATA will block if all buffers are in use.

• RELEASE (void* remote, void* local, int src)

This function returns the RDMA-registered buffer local

to the endpoint. The buffer local cannot be used after

RELEASE returns. If the communication primitive is one-

sided, RELEASE also notifies the remote endpoint src that

buffer remote has been consumed. (See Section 4.4.3 for

more details.) RELEASE does not block.

4.3 The SHUFFLE and RECEIVE operators

Our implementation vectorizes each operator by returning

a batch of tuples in the NEXT function call. We parallelize

the pull-based operator by adding a thread identifier as a

parameter to the NEXT call. Every operator consists of its

state and a set of output buffers; both are thread-partitioned

to avoid cache interference. Threads are exclusively bound

to CPU cores. Although the algorithms are described in the

context of the pull-based operator model, they can be easily

adapted for push-based execution models that commonly

rely on query compilation [31, 40].

We now describe the implementation of the SHUFFLE

and the RECEIVE operators using the endpoint interface de-

scribed in Section 4.2. Figure 4 shows two different config-

urations of the SHUFFLE operator. A single endpoint con-

figuration (SE) is shown in Figure 4(a), where all threads

share one SEND endpoint. This uses less resources at the

expense of contention for the shared resource—the end-

point. The multi-endpoint configuration (ME) is shown in

Figure 4(b), where a SEND endpoint is dedicated to every

thread. This avoids inter-thread contention but increases re-

source consumption by more than an order of magnitude

Algorithm 1: The SHUFFLE operator

state mode: either SingleEndpoint or MultiEndpoint

nextop: reference to the next operator in the pipeline

endpoint: the endpoint object array

outbuf : the output buffers array (see Figure 4)

G: the user-defined communication groups

output state: either MoreData or Depleted

batch: a data buffer

function NEXT(tid)

1 if mode is SingleEndpoint then

2 target← endpoint[0]

3 else if mode is MultiEndpoint then

4 target← endpoint[tid]

5 repeat

6 <state, batch>← nextop.NEXT(tid)

7 foreach tuple in batch do

8 dest← HASH(tuple)

9 curbuf← outbuf[tid][dest]

10 write tuple to curbuf

11 if curbuf is full then

12 target.SEND(curbuf, G[dest], MoreData)

13 outbuf[tid][dest]← target.GETFREE()

until state is Depleted;

14 if mode is MultiEndpoint or tid is last thread then

15 target.SEND(curbuf, G[dest], Depleted)

16 else if mode is SingleEndpoint then

17 target.SEND(curbuf, G[dest], MoreData)

18 return <Depleted, EmptyBatch>

in modern many-core processors: memory registration and

connection time rise proportionally with the number of CPU

cores. Likewise, the RECEIVE operator also supports single-

and multi-endpoint configurations.

4.3.1 The SHUFFLE operator

This implementation of the data-transmitting SHUFFLE op-

erator is shown in Algorithm 1. The SHUFFLE operator owns

a thread-partitioned array of output buffers; output buffer

i is used for transmitting data to the transmission group

G[i]. First, the SHUFFLE operator hashes every tuple t in the

output of the next operator in the pipeline (Alg. 1, line 8)

and copies the tuple to the output buffer of the transmis-

sion group G[HASH(t)] (line 10). When the output buffer

is full, the SHUFFLE operator schedules the entire output

buffer for transmission in one RDMA operation (line 12)

and requests another RDMA-registered transmission buffer

from the endpoint (line 13). This process continues until the

data source is depleted. To shutdown cleanly, the SHUFFLE

operator needs to propagate the Depleted state to all RE-

CEIVE endpoints. In the multi-endpoint configuration every

thread sets the status for its own dedicated endpoint (line 15),

whereas in the single-endpoint configuration the last thread

53

Algorithm 2: The RECEIVE operator

state mode: either SingleEndpoint or MultiEndpoint

endpoint: the endpoint object array

outbuf : the output buffers array

output state: either MoreData or Depleted

batch: a data buffer

function NEXT(tid)

1 if mode is SingleEndpoint then

2 target← endpoint[0]

3 else if mode is MultiEndpoint then

4 target← endpoint[tid]

5 clear outbuf[tid]

6 repeat

7 <state, src, remote, local>← target.GETDATA()

8 copy local into outbuf[tid]

9 target.RELEASE(remote, local, src)

10 if outbuf[tid] is full then

11 return <MoreData, outbuf[tid]>

until state is Depleted;

12 return <Depleted, outbuf[tid]>

sending out data will propagate the end-of-transmission sta-

tus to the remote endpoint (line 15).

A design choice is whether to copy the tuples into

RDMA-registered buffers or directly perform RDMA op-

erations on the input (often referred to as the zero copy

optimization). Our experiments confirm the findings of Ke-

savan et al. [18] that zero copy shows little benefit when

the record size is small (128 bytes). We thus choose to

always copy based on the observation that tuple sizes are

typically less than a few hundred bytes for row-oriented

disk-based database systems, and as little as 16 bytes in

column-oriented main-memory database systems. For ex-

ample, the biggest table (LINEITEM) of the TPC-H database

is 204 bytes wide when loaded in PostgreSQL.

4.3.2 The RECEIVE operator

The implementation of the RECEIVE operator is shown in

Algorithm 2. Each thread will clear its output buffer and then

ask for data from the endpoint (Alg. 2, line 7). It then copies

the data from the RDMA-registered buffer to the output

buffer (line 8) and returns the buffer to the endpoint (line 9).

If the output buffer is full, the thread returns it to the parent

operator (line 11). This process stops when the Depleted

signal is received that marks the end of the data transmission.

4.4 Implementing the communication endpoint

We now describe three implementations of the communica-

tion endpoint that use different RDMA transport functions

and service types, namely the RDMA Send/Receive func-

tion with the Reliable Connection service (Section 4.4.1),

the RDMA Send/Receive function with the Unreliable Data-

gram service (Section 4.4.2) and the RDMA Read function

with the Reliable Connection service (Section 4.4.3).

(a) Send endpoint (b) Receive endpoint

Figure 5. Endpoint implementation for the RDMA Send/Receive

transport function and the Reliable Connection service.

4.4.1 RDMA Send/Receive with Reliable Connection

We now describe how to implement the communication end-

point using the message-passing semantics of the RDMA

Send/Receive transport functions and the Reliable Connec-

tion transport service. The data delivery guarantee, however,

requires that every arriving Send request (that contains the

data) can be matched to a posted Receive request (that spec-

ifies where the data will be stored). A Send request that can-

not be matched to a posted Receive request will be dropped,

as the network card cannot deposit the incoming data in

RDMA-registered memory. The main technical challenge

in implementing a high-performance communication end-

point with the RDMA Send/Receive function and the Re-

liable Connection service is synchronizing the sender and

the receiver to ensure that a Receive request has been posted

before a Send request arrives.

In our implementation, we synchronize senders and re-

ceivers through a stateless credit mechanism, where the re-

ceiver issues credit to the sender only after a Receive request

has been posted. We transmit the absolute credit (that is, the

number of Receive requests that have been posted in this

connection so far) rather than the relative credit (that is, how

many additional Receive requests have been posted) to keep

the credit protocol stateless. The sender, in turn, is obligated

to consume all the issued credits and to issue the same num-

ber of Send requests (which may involve empty buffers if the

transmission is ending) to ensure that there is Send/Receive

request parity. In our implementation, we inline the credit

value in each request to save one DMA request [16]. One

influential configuration parameter for the credit mechanism

is the frequency at which the RECEIVE endpoint will write

back the credit. One can amortize this credit write-back over-

head over multiple Receive requests, at the risk of eventually

starving the SEND endpoint for credit. We experimentally

study this trade-off in Section 5.1.1.

Figure 5 sketches the endpoint implementation that uses

the RDMA Send/Receive transport function for communica-

tion. The credit for every connection is stored in the sending

54

(a) Send endpoint (b) Receive endpoint

Figure 6. Endpoint implementation for the RDMA Send/Receive

transport function and the Unreliable Datagram service.

Queue Pair, which is shown in Figure 5(a), in the variables

sent and credit. Figure 5(b) shows the receiver who will in-

crement the credit after a Receive request has been posted.

With the Reliable Connection service, a Queue Pair on the

local side can communicate with exactly one Queue Pair

on the remote side. Both the SEND and RECEIVE endpoints

have as many Queue Pairs as the cluster size to permit send-

ing and receiving messages from any node. We associate all

the Queue Pairs with a single Completion Queue to amor-

tize the cost of polling, as we can poll all the Queue Pairs for

completions with one invocation of the ibv poll cq function.

The implementation of the interface in Section 4.2 us-

ing RDMA Send/Receive with Reliable Connection is as

follows. In the SEND function, the algorithm iterates over

every node in the transmission group. If this connection

has sufficient credit, it will increment the credit and call

ibv post send to enqueue the buffer for transmission, else it

will wait for credit. The GETFREE function repeatedly polls

using ibv poll cq until a completion event has been received

from each node in the transmission group, and then returns

the buffer for reuse. On the receiver, the RELEASE function

will post a Receive request using ibv post recv, then incre-

ments the credit value of the corresponding sender using the

RDMA Write transport function. GETDATA polls for com-

pletion with ibv poll cq and returns the buffer associated

with the completion request.

4.4.2 RDMA Send/Receive with Unreliable Datagram

Whereas the Reliable Connection service requires n Queue

Pairs to communicate with every other node in an n-node

cluster, an endpoint implementation that uses the Unreliable

Datagram transport service allows a single Queue Pair to

communicate with any other Queue Pair on any node. This

permits an endpoint implementation that has been designed

for the Unreliable Datagram service to drastically cut down

its RDMA-related memory consumption from Θ(n) to Θ(1),
which has been shown to improve performance as it avoids

expensive page table fetches across the PCI bus [8].

Figure 6 shows the endpoint implementation. With the

Unreliable Datagram transport service, we only need a single

Queue Pair in the endpoint to communicate with every other

Queue Pair (cf. the Reliable Connection implementation in

Figure 5). We use the same stateless credit mechanism that

was introduced in Section 4.4.1 to synchronize the sender

and the receiver, with the only distinction being that now all

destinations share one Queue Pair.

One challenge with the Unreliable Datagram transport

service is that message delivery is unreliable and pack-

ets may be lost. Thankfully, this rarely occurs in practice.

As Kalia et al. point out, InfiniBand has lossless link-level

flow control and packets are never lost due to buffer over-

flows [15, 17]. Packet loss happens due to bit errors on the

wire and hardware failures, which are rare events.

Although lost messages are rare, it is common for the Un-

reliable Datagram transport service to deliver packets out of

order. This problem frequently arises at the end of the data

transmission, when the receiving endpoint may see a mes-

sage tagged as Depleted followed by multiple messages

tagged with MoreData. The data receiver needs to ensure

that a transition to the Depleted state is not premature.

We handle unreliable data transmission and out-of-order

deliver by maintaining an additional counter in the Unre-

liable Datagram implementation of the endpoint. The data

sender records the total number of packets sent to each desti-

nation, while the data receiver records the number of packets

received from every source node. At the end of transmission,

the sender communicates the total number of messages sent,

and the receiver will compare this number with the number

of messages it has already received. If the number does not

match, then the receiver has not received all the packets yet,

either due to (rare) packet loss or (commonly) because some

packets are still in transit. We set a limit on the time the re-

ceiver waits for outstanding packets. If the totals still do not

match after waiting, we treat this as a network error and re-

start the query.

4.4.3 RDMA Read with Reliable Connection

We now present an endpoint implementation that uses a one-

sided communication primitive, namely RDMA Read. Dur-

ing communication the SEND endpoint remains completely

passive, while the RECEIVE endpoint will issue the RDMA

Read request to transfer remote data into local memory.

The technical challenge is to identify when a buffer is

ready to be consumed by the receiver, and when a buffer is

available to be reused by the sender. The RECEIVE endpoint

can issue an RDMA Read request only if it knows the ad-

dress of an RDMA-registered buffer in the SEND endpoint.

To facilitate this, the SEND endpoint must share addresses of

full data buffers with the RECEIVE endpoint. Conversely, be-

cause RDMA Read is one-sided, the SEND endpoint cannot

tell when the RDMA Read operation has completed and the

buffer is no longer in use. Thus, the RECEIVE endpoint must

share addresses of free buffers with the SEND endpoint.

55

(a) Send endpoint (b) Receive endpoint

Figure 7. Endpoint implementation for the RDMA Read trans-

port function under the Reliable Connection service.

Figure 7 sketches the endpoint implementation that uses

the RDMA Read transport function with the Reliable Con-

nection service. The notification mechanism to mark buffers

as free or full consists of the circular queues FreeArr and

ValidArr. The circular queues are used as message queues

and remote nodes send messages by updating the message

queues. The SEND endpoint keeps the FreeArr queue while

the RECEIVE endpoint keeps the ValidArr queue. Entries

in both FreeArr and ValidArr point to RDMA-registered

memory in the SEND endpoint. The consume pointer cons

points to the local queue, while the produce pointer prod

points to the remote queue. That is, the SEND endpoint con-

sumes free buffers from the local FreeArr queue and pro-

duces full buffers into the remote ValidArr queue, while

the RECEIVE endpoint consumes full buffers from the lo-

cal ValidArr queue and produces empty buffers in the re-

mote FreeArr queue. The RECEIVE endpoint uses the Lo-

calArr stack to retrieve unused RDMA-registered destina-

tion buffers for the outgoing RDMA Read requests; this

buffer will contain the remote data when the RDMA oper-

ation completes.

Algorithm 3 shows more implementation details. The

SEND function will signal that the buffer can be read by

adding it in the ValidArr queue using an RDMA Write re-

quest to every RECEIVE endpoint in the transmission group.

The GETFREE function looks for free buffers in the FreeArr

of any incoming link, but returns the buffer only if all des-

tinations in the transmission group have notified that buffer

can be reused. On the receiver, the RELEASE function will

signal that the buffer can be reused by adding it in the

FreeArr queue using an RDMA Write request to the orig-

inating SEND endpoint. The GETDATA function first issues

any pending RDMA Read requests until all requests or avail-

able buffers are depleted. It then blocks until at least one

completion is received and returns the buffer for use.

Algorithm 3: RDMA Read with Reliable Connection

function SEND(buffer, destarr, state)

1 addr← address of buffer

2 encode (destarr, state, source, addr) as metadata in buffer

3 foreach node in destarr do

4 ValidArr[node]
[

prod[node]
]

← addr

5 increment prod[node]

function void* GETFREE()

6 while true do

7 for i ∈ [1,N] do

8 while FreeArr[i] is not empty do

9 buffer← FreeArr[i]
[

cons[i]
]

10 increment cons[i]

11 mark notification for buffer

12 gid← the transm. group buffer was sent to

13 if
∣

∣G[gid]
∣

∣ notifications received then

14 return buffer

15 wait

function RELEASE(remote, local, src)

16 FreeArr[src]
[

prod[src]
]

← remote

17 increment prod[src]

18 push local into LocalArr[src]

function <state, src, remote, local>GETDATA()

19 for i ∈ [1,N] do

20 while ValidArr[i] is not empty

and LocalArr[i] is not empty do

21 remote← ValidArr[i]
[

cons[i]
]

22 increment cons[i]

23 local← pop from LocalArr[i]

24 call ibv post send to read remote into local

25 buffer← call ibv poll cq to poll for completions

26 decode (state, source, addr) from metadata in buffer

27 return <state, source, addr, buffer>

4.5 Putting it all together: Design alternatives for

high-performance data shuffling

So far Section 4 has introduced two orthogonal design

choices: (a) the number of endpoints per operator, and (b)

different endpoint implementations. The endpoint abstrac-

tion was introduced in Section 4.3 as a configurable pa-

rameter that can balance shared resource contention with

excessive resource consumption. The two extremes of this

design dimension are a single endpoint design (SE) that as-

signs one endpoint to all threads, or a multi-endpoint design

(ME) that dedicates one endpoint per thread. Section 4.4

has presented three different endpoint implementations that

use a single Queue Pair and the message-passing RDMA

Send/Receive primitive (SQ/SR), or multiple Queue Pairs

with either the message-passing RDMA Send/Receive prim-

itive (MQ/SR) or the shared-memory RDMA Read primi-

tive (MQ/RD). These design dimensions are orthogonal and

56

RDMA Read RDMA Send/Receive

One-sided communication, Two-sided communication,

periodic coordination continuous coordination

needed to manage buffers needed on every transfer Open connections Thread

Flow control in hardware Flow control in software (QPs) per node contention Messaging Transport

MEMQ/RD MEMQ/SR Excessive n · t None Round-trip, Reliable Connection (RC),

SEMQ/RD SEMQ/SR Moderate n Moderate up to 1 GiB error control in hardware

Not supported MESQ/SR Moderate t None Half-trip, Unreliable Datagram (UD),

by InfiniBand SESQ/SR Minimal 1 Excessive up to 4 KiB error control in software

Table 1. Alternative data shuffling operator designs for a cluster with n nodes and t threads per query fragment.

can be combined to produce six design alternatives for a

data shuffling operator for high-performance networks. We

refer to each design by concatenating the number of end-

points (SE or ME) with the implementation of the endpoint

(SQ/SR, MQ/SR, MQ/RD). Table 1 summarizes the trade-

offs associated with each of the six algorithms in a cluster

with n nodes and t threads per query fragment.

5. Experimental evaluation

We have implemented all variants of the data SHUFFLE

and RECEIVE operators in Pythia, a prototype open-source

in-memory query engine that is written in C++ [34]. We

evaluate data shuffling in two shared clusters. One cluster is

connected by an FDR (56 Gb/s) InfiniBand network. Each

node in the FDR cluster has 64 GiB memory across two

NUMA nodes with Intel Xeon E5-2670v2 10-core proces-

sors. The other shared cluster is connected by an EDR (100

Gb/s) InfiniBand network. Each node in the cluster has 128

GiB memory across two NUMA nodes with two Intel Xeon

E5-2680v4 14-core processors. We use 8 nodes in our eval-

uation, unless otherwise specified.

This section evaluates the following questions:

• What is the overhead of flow control when using the two-

sided RDMA Send/Receive transport function? (§ 5.1.1)

• How does the message size affect performance with the

Reliable Connection transport service? (§ 5.1.2)

• How does the repartition and broadcast throughput scale as

the cluster size grows? (§ 5.1.3)

• How does the number of Queue Pairs affect performance?

(§ 5.1.4)

• How significant is the setup cost for RDMA? (§ 5.1.5)

• What is the performance with compute-intensive queries?

(§ 5.1.6)

• Does a faster network improve query performance? (§ 5.2.1)

• How does query response time scale as the database size

grows proportionally to the cluster size? (§ 5.2.2)

5.1 Evaluating receive throughput

In this section, we use a synthetic workload to study the re-

ceive throughput per node with different data shuffling algo-

rithms. We generate a synthetic table R with two long inte-

ger attributes R.a and R.b for evaluation. The table contains

1 billion tuples and the size of the table is 16 GiB. R.a is uni-

formly distributed and randomized. This table is replicated

in each node of the cluster.

We evaluate the throughput of the data shuffle operation

with a synthetic query. In this query, all the nodes scan the

local fragment of table R and repartition R using R.a as the

key. The communication pattern corresponds to repartition-

ing data which is uniformly and randomly distributed. We

calculate the total throughput as the reciprocal of the query

response time and divide by the total number of nodes in the

cluster. This slightly underestimates peak throughput as the

shuffling operation may not complete at the same time. To

amortize transient fluctuations in network performance, the

R table is scanned and transmitted ten times (in a sequence)

such that 160GiB per node are transmitted.

As we are not aware of any open-source RDMA-capable

parallel database system, we revert to three performance

baselines. One comparison baseline is the MVAPICH2 [25]

implementation of the ubiquitous MPI library [29] that uses

RDMA for communication. We have implemented an end-

point using MPI. In the repartition algorithm, the sender

uses MPI Send to send data while the receiver calls the

MPI Irecv function to retrieve data. The MPI implementa-

tion uses the MPI Ibcast primitive for the broadcast algo-

rithm. Second, we report results from qperf [35], a band-

width benchmarking tool. The sender in qperf only reg-

isters a single buffer for data transfer and keeps posting

RDMA Send requests. The receiver in qperf continuously

posts RDMA Receive requests in an infinite loop and never

accesses the transmitted data. Although qperf gives some

measure of “peak” networking capability for each cluster,

these design assumptions preclude any direct comparison.

We also compare with TCP/IP-based communication over

InfiniBand (“IPoIB”). This reflects the performance from a

network upgrade without any changes in software. In the

IPoIB algorithm, we use the send() function in the sender.

In the receiver, we use select() to monitor the sockets cre-

ated for communication, and we call recv() to receive data

when one socket is ready.

5.1.1 Flow control overhead in RDMA Send/Receive

The two-sided RDMA Send/Receive transport functions re-

quire flow control in software, else packets will be dropped.

57

1 2 3 4 8 16

Frequency of credit update

0
1

2
3

4
5

6

R
e

c
e

iv
e

 t
h

ro
u

g
h

p
u

t
p

e
r

n
o

d
e

 (
G

iB
/s

)

MPI

qperf

SEMQ/SR

MEMQ/SR

SESQ/SR

MESQ/SR

(a) 56 Gbps FDR InfiniBand

1 2 3 4 8 16

Frequency of credit update

0
2

4
6

8
1
0

1
2

R
e

c
e

iv
e

 t
h

ro
u

g
h

p
u

t
p

e
r

n
o

d
e

 (
G

iB
/s

)

MPI

qperf

SEMQ/SR

MEMQ/SR

SESQ/SR

MESQ/SR

(b) 100 Gbps EDR InfiniBand

Figure 8. Performance of the MQ/SR and SQ/SR algo-

rithms when changing the credit write back frequency.

We synchronize the sender and the receiver through a credit

protocol that is described in Section 4.4.1. The question is

what is the overhead of the credit mechanism and how does

the credit write back frequency affect performance. In this

experiment, we use 8 nodes and each thread registers 16

RDMA buffers per remote node.

We study the performance of all RDMA Send/Receive al-

gorithms when we change the frequency of the credit update

and we measure the throughput at the data receiver. The re-

sult is shown in Figure 8. The horizontal axis is the credit

write back frequency, which reflects how many RDMA Re-

ceive requests the data receiver needs to post before it writes

back the credit. The vertical axis is the receive throughput

for each algorithm. From the evaluation, we can see that the

performance degradation due to the credit mechanism is not

very significant. We thus fix the write back frequency to two

requests for all RDMA Send/Receive algorithms.

5.1.2 Effect of message size in Reliable Connection

In our shuffling algorithm, tuples are accumulated in an

RDMA-registered buffer and are sent out as one RDMA

message. While the Unreliable Datagram transport only sup-

ports messages that are up to 4 KiB big, the Reliable Con-

nection transport supports messages as big as 1 GiB. One

thus needs to tune the message size for the MQ algorithms

that use the Reliable Connection transport. In this experi-

ment, we use double buffering, i.e. every thread will register

two RDMA buffers for each destination, and we change the

message size from 4 KiB to 1 MiB. The experiment runs

on eight nodes in the EDR cluster. The result is shown in

Figure 9. The horizontal axis is the message size and the

vertical axis is the receive throughput for each algorithm.

For the SEMQ/RD and SEMQ/SR algorithms, the through-

put first increases when increasing the message size, then

slightly drops after reaching the peak throughput. For the

MEMQ/RD and MEMQ/SR algorithms, the performance

stays stable as the message size changes.

Message sizes around 1 MiB are unrealistic configuration

choices in practice, however. Figure 9(b) shows the memory

registered for RDMA communication (vertical axis) as the

4KB 16KB 64KB 256KB 1MB

Message size

0
2

4
6

8
1
0

1
2

R
e

c
e

iv
e

 t
h

ro
u

g
h

p
u

t
p

e
r

n
o

d
e

 (
G

iB
/s

)

MEMQ/RD

SEMQ/RD

MEMQ/SR

SEMQ/SR

MESQ/SR

SESQ/SR

(a) Throughput

4KB 16KB 64KB 256KB 1MB

Message size

0
4

0
8

0
1
2

0
2

0
0

1
6

0
2

4
0

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

M
iB

)

MEMQ/RD, SEMQ/RD,

MEMQ/SR, SEMQ/SR

MESQ/SR, SESQ/SR

(b) Memory consumpution

Figure 9. Effect of message size for EDR InfiniBand.

message size changes (horizontal axis) when running on 8

nodes in the EDR cluster. As the message size approaches 1

MiB, the pinned RDMA memory can be 100 MiB or more

for a single shuffle operator. If one considers that query plans

consist of multiple shuffle operators and parallel database

systems may execute dozens of query fragments concur-

rently, a message size around 1 MiB may translate into a

pinned memory footprint of 10 GiB or more. The RDMA

Send/Receive algorithm in the Unreliable Datagram proto-

col has a decisive space advantage here, as it requires under

1 MiB of pinned memory to achieve its peak throughput.

Based on these results, we fix the message size to be

64 KiB for the algorithms that use the Reliable Connection

transport and fix double buffering for all algorithms.

5.1.3 Throughput when scaling out

This section studies the performance of the six algorithms

when increasing the number of nodes. In this experiment, we

run the six algorithms using 2, 4, 8 and 16 nodes. The result

is shown in Figure 10. In addition to the six RDMA-aware

algorithms, we also run experiments with MPI and IPoIB.

The vertical axis shows the receive throughput per node.

The dashed lines represent the throughput reported by qperf

while bars show the throughput of each algorithm. Since

qperf does not support the broadcast pattern, we omit the

throughput measurement for qperf in the broadcast result.

Figures 10(a) and 10(c) show performance for the repar-

tition pattern in the FDR and the EDR cluster respectively.

First, our RDMA-aware algorithms outperform the MPI al-

gorithm by as much as 2× (see Figure 10(c), MESQ/SR

vs. MPI with 16 nodes in the EDR cluster), and outperform

the IPoIB algorithm by as much as 3× (see Figure 10(a)

MESQ/SR vs. IPoIB with 8 nodes in the FDR cluster).

Looking at the FDR cluster in Figure 10(a), the MESQ/SR

algorithm has comparable performance to all other algo-

rithms when the cluster size is small, but exhibits better

scalability than other algorithms as the cluster size increases.

This is attributed to the number of open connections: As

shown in Table 1, the number of open connections per node

for the MESQ/SR algorithm is constant while the number

of open connections increases proportionally to the cluster

size for all the MQ algorithms. For 16 nodes, the MESQ/SR

58

MEMQ/SR MEMQ/RD MESQ/SR SEMQ/SR SEMQ/RD SESQ/SR MPI IPoIB qperf

2 nodes 4 nodes 8 nodes 16 nodes

R
e
c
e
iv

e
 t
h
ro

u
g
h
p
u
t
p
e
r

n
o
d
e
 (

G
iB

/s
)

0
1

2
3

4
5

6

(a) Repartition throughput with 56Gbps FDR InfiniBand.

2 nodes 4 nodes 8 nodes 16 nodes

R
e
c
e
iv

e
 t
h
ro

u
g
h
p
u
t
p
e
r

n
o
d
e
 (

G
iB

/s
)

0
1

2
3

4
5

6

(b) Broadcast throughput with 56Gbps FDR InfiniBand.

2 nodes 4 nodes 8 nodes 16 nodes

R
e
c
e
iv

e
 t
h
ro

u
g
h
p
u
t
p
e
r

n
o
d
e
 (

G
iB

/s
)

0
2

4
6

8
1
0

1
2

(c) Repartition throughput with 100Gbps EDR InfiniBand.

2 nodes 4 nodes 8 nodes 16 nodes

R
e
c
e
iv

e
 t
h
ro

u
g
h
p
u
t
p
e
r

n
o
d
e
 (

G
iB

/s
)

0
2

4
6

8
1
0

1
2

(d) Broadcast throughput with 100Gbps EDR InfiniBand.

Figure 10. Throughput when changing the number of nodes in the cluster.

algorithm even outperforms the qperf which runs using Re-

liable Connection transport.

Looking at the EDR cluster in Figure 10(c), the MESQ/SR

algorithm has good performance when scaling out. Unlike

the results from the FDR cluster, the performance of the

MQ/SR algorithms does not degrade as the cluster grows.

This is because the EDR hardware can cache QP data for

more point-to-point connections [17].

When profiling the repartition run on 8 nodes of the

EDR cluster, we found that the IPoIB algorithm spends

about 2/3 of the cycles in the send and recv functions. The

SESQ/SR algorithm is bottlenecked due to contention for the

ibv post send function. On the sender side of the RDMA al-

gorithms, the most CPU-intensive activity is hashing the in-

dividual tuples and copying them to RDMA-registered mem-

ory. Still, about 30% of the cycles are idle and would be

devoted to other activities in a well-designed database sys-

tem. Barthels et al. [2] reduce this overhead further by using

AVX instructions during partitioning. Among the RDMA

algorithms, the MEMQ/SR and MESQ/SR algorithms are

blocked for credit, while the rest are blocked on the com-

pletion of pending RDMA operations. On the receiving side,

all RDMA algorithms are blocked on the completion of prior

RDMA operations and up to 90% of the cycles are idle.

The results for the broadcast pattern are shown in Fig-

ures 10(b) and 10(d). The RDMA-aware algorithms outper-

form MPI and IPoIB by as much as 3× (for MPI see Fig-

ure 10(d), SEMQ/SR vs. MPI with 16 nodes in the EDR

cluster; for IPoIB see Figure 10(b) MESQ/SR vs. IPoIB with

16 nodes in the FDR cluster). As also seen in the repar-

tition pattern, the MESQ/SR algorithm shows good scal-

ability in the FDR cluster while the MQ algorithms de-

grade. In contrast to the repartition results, the performance

of MEMQ/RD and SEMQ/RD degrades significantly in the

broadcast communication pattern. This is because in the

broadcast pattern a buffer is free and will be reused only

when all the nodes finish reading its data. For the RDMA

Read algorithms, the time to reuse one buffer depends on

when the last node finishes reading the data. It is therefore

possible for nodes to starve for free buffers if there is some

load imbalance or there is a transient network degradation.

We conclude that the RDMA shuffling algorithms show

throughput close to the line bandwidth for FDR and EDR

InfiniBand. The MESQ/SR algorithm, in particular, shows

good scalability in both. Compared with the MPI and IPoIB

alternatives, our RDMA-aware data shuffling algorithms

outperform by as much as 3×.

5.1.4 Effect of many Queue Pairs

In this section we show the throughput of the RDMA algo-

rithms with different number of Queue Pairs. Prior work has

shown that the number of Queue Pairs can significantly af-

fect performance [16, 17]. In the experiment, the repartition

59

1 2 7 14 32 112 22416

Number of Queue Pairs per operator

0
2

4
6

8
1
0

1
2

R
e

c
e

iv
e

 t
h

ro
u

g
h

p
u

t
p

e
r

n
o

d
e

 (
G

iB
/s

)

MQ/RD

MQ/SR

SQ/SRSE

ME

SE

ME

Figure 11. Effect of many Queue Pairs.

2 4 6 8 10 12 14 16

5
0

1
5

0
2

5
0

1
0

0
2

0
0

3
0

0

Cluster size

T
im

e
 (

m
s
)

MEMQ/RD

MEMQ/SR

MESQ/SR

SEMQ/RD

SEMQ/SR

SESQ/SR

Figure 12. Time to build RDMA con-

nection.

0 5 10 15

Average time to retrieve next batch of data (us/32KiB)

2
0

%
6

0
%

1
0

0
%

4
0

%
8

0
%

R
e

la
ti
ve

 s
h

u
ff

lin
g

 t
h

ro
u

g
h

p
u

t

MEMQ/RD
MEMQ/SR
MESQ/SR
MPI

SEMQ/RD
SEMQ/SR
SESQ/SR
IPoIB

Figure 13. Performance for compute-

intensive query.

algorithms ran on 16 nodes in the EDR cluster and with a

different number of endpoints. (This controls the number of

Queue Pairs, as shown in Table 1.)

The result is plotted in Figure 11. The horizontal axis

is the number of Queue Pairs and the vertical axis is the

receiving throughput per node. The result shows that the

MESQ/SR algorithm achieves higher throughput than the

MQ/SR and MQ/RD algorithms with fewer Queue Pairs.

Note that in a larger cluster the SQ/SR algorithm would

use the same number of Queue Pairs, while all the MQ

algorithms would use proportionally more Queue Pairs.

5.1.5 Fixed costs of setting up RDMA communication

Some queries do not shuffle a lot of data. For such queries,

the communication initialization time matters as much as

the peak throughput. One question is whether a database

system should build the RDMA connections at runtime. We

report the time spent in building the connection, registering

memory, and de-registering memory in the EDR cluster as

the cluster size increases to answer this question.

The time to build RDMA connections is shown in Fig-

ure 12. (The time to register and de-register memory is neg-

ligible as it takes less than 5 ms and 1 ms respectively.)

The horizontal axis is the number of nodes and the verti-

cal axis is the time to build the RDMA connections. The

ME algorithms take longer to build the connection than the

SE algorithms as the ME algorithms need to connect multi-

ple endpoints. The connection time increases linearly for the

MQ algorithms and stays stable for the SQ algorithms as the

cluster size increases. (This is because the connection time

is proportional to the number of Queue Pairs; see Table 1.)

Prior work shows that RDMA connection setup takes about

200 ms [10], but our evaluation reveals that the set up time

for the MESQ/SR algorithm stays stable at less than 40 ms

when scaling out. The high throughput of the MESQ/SR al-

gorithm can make up for the slow connection time: Queries

which shuffle as little as 250 MB data using the MESQ/SR

algorithm will outperform IPoIB when building connections

at runtime.

5.1.6 Performance for compute intensive query

In the experiments so far we have compared all algorithms

with a synthetic network-bound query. This section stud-

ies how the different shuffling algorithms perform when the

query becomes compute intensive. In our experiment, we

adjust the compute intensity of the receiving query frag-

ment (pipeline) to simulate different compute demands in

real queries. We evaluate the repartition algorithms using 8

nodes in the EDR cluster. The receiving plan fragment con-

tinuously fetches new data in batches of 32 KiB (the L1 data

cache size in the EDR cluster) from the receive operator and

then processes the data.

In Figure 13, the horizontal axis shows the average time

to retrieve the next batch of data. When the plan fragment

is more compute intensive (moving right on the horizontal

axis), the receiving query fragment takes longer to process

the data, and thus the time to retrieve the next batch in-

creases. (Note that the horizontal axis does not correspond

to the processing time per batch: all threads process batches

concurrently in the receiving query fragment and any thread

can “snatch” the next batch for processing.) The vertical axis

is the shuffling throughput of the RDMA algorithm relative

to the processing throughput of the receiving fragment. The

relative shuffling throughput reaches 100% when computa-

tion and communication completely overlap.

As shown in Figure 13, all algorithms are network-bound

if the receiving fragment does minimal processing. At the

leftmost point, the throughput of the data shuffling algo-

rithm (∼ 11 GiB/sec) is only a fraction of the throughput

of the receiving query fragment (∼ 50 GiB/sec). As the re-

ceiving query fragment becomes more compute intensive,

the MQ/SR and MESQ/SR algorithms reach peak through-

put earlier than the MQ/RD algorithms. All RDMA algo-

rithms except SESQ/SR outperform MPI and IPoIB for both

network-bound and compute-bound queries. Interestingly,

MPI and IPoIB fail to completely overlap communication

and computation even for compute-intensive queries.

60

5.2 Evaluation with TPC-H data

We now turn to the TPC-H data warehousing benchmark to

evaluate query response time when using the MESQ/SR al-

gorithm in comparison to MPI. We use the same configura-

tion settings as in Section 5.1.3. We distribute each tuple of

every table in TPC-H to a random node in the cluster, except

for the NATION and REGION tables which we replicate to all

nodes (they contain only 25 and 5 tuples, respectively). This

data distribution mimics the experimental setup used in prior

work [12, 37, 41]. We pre-project all unused columns as a

column-store database would. We choose TPC-H queries

Q3, Q4 and Q10 for the evaluation due to their data access

locality [4], and we use the query optimizer of a commercial

database system to obtain the query execution plan.

5.2.1 Response time with faster network adapter

We first investigate how query response time changes as one

upgrades from the slower 56Gbps FDR InfiniBand to the

faster 100Gbps EDR InfiniBand. In this experiment the same

TPC-H database with scale factor 400 is distributed across

the memory of 8 nodes in both the FDR and EDR clusters.

Figure 14(a) shows the response time from TPC-H Q4.

The “local data” bar shows the query response time if all

data were stored locally and there were no data shuffling, i.e.

all input tables are already co-partitioned. (Note that the lo-

cal processing time is faster for the EDR cluster as the nodes

have faster CPUs and faster memory.) We observe that the

MESQ/SR algorithm outperforms MPI in both clusters by

the same margin. The performance advantage of MESQ/SR

can be traced back to the nearly 2× higher 8-node broad-

cast throughput of MESQ/SR over MPI in Figures 10(b)

and 10(d). Second, we observe that the MESQ/SR algo-

rithm has similar performance as the “local data” plan that

doesn’t shuffle any data. This indicates that the MESQ/SR

can successfully overlap communication and computation,

unlike MPI. More importantly, as the hardware is upgraded,

the performance improvement of MESQ/SR is keeping pace

with the improvement in local processing (about 50% for

both from FDR to EDR), while MPI is lagging further be-

hind (about 30% gain from FDR to EDR).

5.2.2 Query response time when scaling

We now investigate how query response time changes as

the TPC-H database grows in proportion to the cluster size.

We generated TPC-H databases with scale factors 200, 400,

800 and 1600 and loaded them to 2, 4, 8 and 16 nodes,

respectively, of the EDR cluster. We evaluate with TPC-H

Q3, Q4 and Q10. While Q4 only joins two tables, Q3 and

Q10 join three and four tables on different attributes. This

makes co-partitioning without replication impossible; thus,

we omit the “local data” experiment for Q3 and Q10.

The response time of TPC-H Q4, Q3 and Q10 is shown in

Figures 14(b), 14(c) and 14(d). The “local data” bar in Fig-

ure 14(b), again, shows the performance of the query plan if

MPI

MESQ/SR

Local data

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Cluster size

0
1

2
3

FDR EDR

(a) Effect of EDR network
on response time of TPC-
H query 4, 8 nodes.

MPI

MESQ/SR

Local data

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Cluster size

0
1

2
3

4
5

2 4 8 16

(b) TPC-H query 4.

MPI

MESQ/SR

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Cluster size

0
2

4
6

8
1
0

1
2

2 4 8 16

(c) TPC-H query 3.

MPI

MESQ/SR

R
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Cluster size

0
1
0

2
0

3
0

4
0

2 4 8 16

(d) TPC-H query 10.

Figure 14. TPC-H query response time, 100 GiB per node.

all data were stored locally, i.e. the data were co-partitioned.

(Note that the optimal scale-out line is increasing due to

the broadcast communication pattern: as the cluster size in-

creases, the database grows, hence every node receives pro-

portionally more data.) We observe that the MESQ/SR algo-

rithm scales better than MPI. For both Q3 and Q4, although

both algorithms perform similarly with 2 nodes, MESQ/SR

is nearly 70% faster for Q4 and 55% faster for Q3 than MPI

for 16 nodes. For Q10, MESQ/SR is nearly 2× faster than

MPI for 16 nodes.

6. Related Work

High performance networks. Foong et al. [9] show that

about 1GHz in CPU performance is necessary for every

1Gb/s network throughput. In addition to being CPU inten-

sive, Frey et al. [11, 12] show that TCP introduces traffic on

the memory bus because of data copying. The zero-copy and

CPU-bypass features of RDMA bypass that overhead. Frey

et al. [10] show that communication can benefit from RDMA

only when buffers are large and are reused.

RDMA is extensively studied in supercomputing. Liu et

al. [23, 25] use Send/Receive and RDMA Write to transmit

data in MVAPICH, while they use RDMA Write to trans-

mit small messages and RDMA Read to transmit large mes-

sages in the MPICH2 implementation. Liu et al. [24] have

also studied how to efficiently implement broadcast in MPI.

MacArthur and Russell [27] compare the performance of

different RDMA verbs. Koop et al. [19] reduced the memory

61

consumption in MPI by lowering the number of sent WQEs

in RDMA connections and coalescing messages.

RDMA is also studied for key-value stores and “big data”

processing. Mitchell et al. [28] use Send/Receive and Read

to implement puts and gets, respectively, in key-value stores.

Kalia et al. [15] use unreliable RDMA Write for client re-

quests and use Send/Receive in unreliable datagram trans-

port for server responses. Lu et al. [14, 26] improve the per-

formance of Hadoop and HBase by using RDMA instead

of TCP/IP communication. Dragojević et al. [8] designed

FaRM, a computing platform which uses RDMA Read for

data accesses and RDMA Write for messages. Wu et al. [44]

have extended FaRM with graph processing capabilities.

Chen et al. [6] and Wei et al. [43] implement a distributed in-

memory transaction processing system with one-sided mem-

ory and atomic primitive provided in RDMA and hardware

transactional memory.

New algorithms for fast networks. Li et al. [22] have

studied the data shuffling problem in NUMA systems and

proposed careful scheduling of the communication. Poly-

chroniou et al. [33] propose a new join algorithm, “track

join”, which tracks the distribution of data in a relation on

a tuple-by-tuple basis and uses the data distribution to re-

duce the communication workload. Rödiger et al. [38] also

take data distribution properties into account and propose an

integer linear optimization program to find optimal commu-

nication schedules in their “neo-join” algorithm. Although

both works are motivated by the high bandwidth that is avail-

able in high-end networks, these algorithms are orthogonal

to the selection of the network.

More recent work has also considered how RDMA in-

teracts with database operations. Utilizing the features of

RDMA, Frey et al. [10, 12] design a new join algorithm,

the “cyclo-join” algorithm, which uses RDMA to transfer

data. Their results show that with a proper design, the mem-

ory bandwidth rather than the network becomes the bottle-

neck. Tinnefeld et al. [42] study join operations over RAM-

Cloud, which is a DRAM-based storage system connected

via RDMA-enabled network adapters. They compare Grace

join, distributed Block Nested Loop join and cyclo-join.

They also consider three node allocation algorithms and

three data distribution strategies. Muhleisen et al. [30] study

the performance of database when using memory in re-

mote nodes using RDMA. Barthels et al. [3] study how to

scale the radix join algorithm to rack-scale using RDMA

to transmit data during the partitioning phase of the join.

Rödiger et al. [37] propose hybrid parallelism to distin-

guishes local and distributed parallelism and design a push-

based multiplexer to shuffle data; all threads share the same

multiplexer. In contrast, in our work, we design pull-based

endpoints and systematically explore both one-sided shared

memory primitives and two-sided message-passing primi-

tives as well as different endpoint assignments to threads.

Recently, Rödiger et al. [36] propose the “flow-join” algo-

rithm that uses RDMA to ameliorate skew during the join.

Li et al. [21] uses RDMA to directly access the buffer pool

of other nodes in Microsoft SQL Server. Barthels et al. [2]

used MPI to explore the performance of distributed join al-

gorithms in HPC systems with thousands of CPU cores.

7. Conclusions and future work

This paper studies the challenges and opportunities in utiliz-

ing RDMA to shuffle data among query fragments in paral-

lel database systems. We propose six algorithms which uti-

lize both a reliable and an unreliable transport service as

well as one-sided and two-sided RDMA transport functions.

We find that the MESQ/SR algorithm that uses the Send/Re-

ceive message-passing abstraction over an unreliable trans-

port layer exhibits robust performance across all configura-

tions, despite the overheads of coordination, flow control

and error handling in software. Experiments with TPC-H

queries show that the MESQ/SR algorithm completely over-

laps computation and communication; this improves query

response time by up to 2× over an RDMA-capable MPI im-

plementation.

Our future work will explore three avenues. First, we plan

to implement an endpoint based on the RDMA Write prim-

itive to evaluate its performance. Second, we plan to inves-

tigate how performance changes when using the same al-

gorithms in RoCE and iWARP networks. Third, we plan to

specialize the MESQ/SR algorithm to use the native Infini-

Band multicast primitive for broadcasting data. We hypoth-

esize that this will reduce the CPU cost during analytical

query processing, as MESQ/SR already achieves throughput

close to the line bandwidth.

Analytical performance remains an end-to-end concern

that requires the interplay of many different algorithms.

Faster data transmission will naturally expose bottlenecks

in other components of the analytical execution pipeline.

Amdahl’s law suggests that future performance gains will

come from directly integrating RDMA capabilities within

individual algorithms and from holistically rethinking query

processing for RDMA-capable networks.

Source code

We have implemented all data shuffling algorithms in the

open-source Pythia query engine. Our code can be found at

https://code.osu.edu/pythia/core.

Acknowledgements

We would like to thank the anonymous reviewers and Jens

Teubner, our shepherd, for their insightful comments that

greatly improved this paper. This research was partially sup-

ported by the National Science Foundation under grants III-

1422977, III-1464381, CNS-1513120 and by a Google Re-

search Faculty Award. The evaluation was conducted in part

at the Ohio Supercomputer Center [32].

https://code.osu.edu/pythia/core

62

References

[1] http://www.accelio.org/.

[2] C. Barthels, G. Alonso, T. Hoefler, T. Schneider, and I. Müller.

Distributed join algorithms on thousands of cores. PVLDB,

10(5):517–528, 2017.

[3] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. Rack-

scale in-memory join processing using RDMA. In SIGMOD

’15, pages 1463–1475. ACM, 2015.

[4] P. A. Boncz, T. Neumann, and O. Erling. TPC-H ana-

lyzed: Hidden messages and lessons learned from an influen-

tial benchmark. In Performance Characterization and Bench-

marking - 5th TPC Technology Conference, TPCTC 2013,

Trento, Italy, August 26, 2013, Revised Selected Papers, pages

61–76, 2013.

[5] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:

Hyper-pipelining query execution. In CIDR, pages 225–237,

2005.

[6] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and

general distributed transactions using RDMA and HTM. In

Proceedings of the Eleventh European Conference on Com-

puter Systems, EuroSys ’16, pages 26:1–26:17, New York,

NY, USA, 2016. ACM.

[7] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,

A. Bricker, H. I. Hsiao, and R. Rasmussen. The gamma

database machine project. IEEE Trans. on Knowl. and Data

Eng., 2(1):44–62, Mar. 1990.

[8] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.

Farm: Fast remote memory. NSDI’14, pages 401–414, 2014.

[9] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and

G. J. Regnier. TCP performance re-visited. ISPASS ’03, pp.

70–79, 2003.

[10] P. W. Frey and G. Alonso. Minimizing the hidden cost of

RDMA. ICDCS 2009, pages 553–560, 2009.

[11] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner. Spin-

ning relations: High-speed networks for distributed join pro-

cessing. DaMoN ’09, pages 27–33, New York, NY, USA,

2009. ACM.

[12] P. W. Frey, R. Goncalves, M. L. Kersten, and J. Teubner. A

spinning join that does not get dizzy. ICDCS 2010, pages

283–292, 2010.

[13] G. Graefe. Volcano: An extensible and parallel query evalua-

tion system. IEEE Trans. on Knowl. and Data Eng., 6(1):120–

135, 1994.

[14] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,

H. Wang, H. Subramoni, C. Murthy, and D. K. Panda. High

performance RDMA-based design of HDFS over InfiniBand.

SC ’12, 2012.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA

efficiently for key-value services. SIGCOMM’14, pp.295–

306, 2014.

[16] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guide-

lines for high performance rdma systems. In 2016 USENIX

Annual Technical Conference (USENIX ATC 16), pages 437–

450, Denver, CO, June 2016. USENIX Association.

[17] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast,

scalable and simple distributed transactions with two-sided

(RDMA) datagram rpcs. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16),

GA, Nov. 2016. USENIX Association.

[18] A. Kesavan, R. Ricci, and R. Stutsman. To copy or not to

copy: Making in-memory databases fast on modern nics. In

ADMS-IMDM 2016, Nov. 2016.

[19] M. J. Koop, T. Jones, and D. K. Panda. Reducing connec-

tion memory requirements of MPI for InfiniBand clusters: A

message coalescing approach. CCGrid 2007, pages 495–504,

2007.

[20] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven

parallelism: A NUMA-aware query evaluation framework for

the many-core age. SIGMOD ’14, pages 743–754. ACM,

2014.

[21] F. Li, S. Das, M. Syamala, and V. R. Narasayya. Accelerating

relational databases by leveraging remote memory and rdma.

SIGMOD ’16, pages 355–370. ACM, 2016.

[22] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman.

Numa-aware algorithms: the case of data shuffling. In CIDR

2013, Sixth Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, USA, January 6-9, 2013, Online Pro-

ceedings, 2013.

[23] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,

D. Buntinas, W. Gropp, and B. R. Toonen. Design and imple-

mentation of MPICH2 over InfiniBand with RDMA support.

CoRR, cs.AR/0310059, 2003.

[24] J. Liu, A. R. Mamidala, and D. K. Panda. Fast and scalable

MPI-level broadcast using InfiniBand hardware multicast sup-

port. IPDPS, 2004.

[25] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-

based MPI implementation over InfiniBand. Int. J. Parallel

Program., 32(3):167–198, June 2004.

[26] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subra-

moni, H. Wang, and D. K. Panda. High-performance design of

Hadoop RPC with RDMA over InfiniBand. ICPP ’13, pages

641–650, 2013.

[27] P. MacArthur and R. D. Russell. A performance study to guide

RDMA programming decisions. HPCC-ICESS, pp. 778–785,

2012.

[28] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA

reads to build a fast, CPU-efficient key-value store. USENIX

ATC’13, pages 103–114, 2013.

[29] http://www.mpi-forum.org/.

[30] H. Mühleisen, R. Gonçalves, and M. Kersten. Peak perfor-

mance: Remote memory revisited. DaMoN ’13, pages 9:1–

9:7, 2013.

[31] T. Neumann. Efficiently compiling efficient query plans for

modern hardware. PVLDB, 4(9):539–550, 2011.

[32] Ohio Supercomputer Center. Ruby Supercomputer.

http://osc.edu/ark:/19495/hpc93fc8, 2015.

[33] O. Polychroniou, R. Sen, and K. A. Ross. Track join: Dis-

tributed joins with minimal network traffic. SIGMOD’14,

1483–1494, 2014.

http://www.accelio.org/
http://www.mpi-forum.org/
http://osc.edu/ark:/19495/hpc93fc8

63

[34] https://code.osu.edu/pythia/core.

[35] https://www.openfabrics.org/downloads/qperf/.

[36] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann. Flow-

Join: Adaptive skew handling for distributed joins over high-

speed networks. ICDE’16, 2016.

[37] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann.

High-speed query processing over high-speed networks.

PVLDB, 9(4):228–239, 2015.

[38] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser,

A. Kemper, and T. Neumann. Locality-sensitive operators for

parallel main-memory database clusters. ICDE 2014, pages

592–603, 2014.

[39] https://linux.die.net/man/7/rsocket.

[40] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.

Lorie, and T. G. Price. Access path selection in a relational

database management system. SIGMOD ’79, pages 23–34,

1979.

[41] A. Shatdal and J. F. Naughton. Adaptive parallel aggregation

algorithms. In Proceedings of the 1995 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’95,

pages 104–114, New York, NY, USA, 1995. ACM.

[42] C. Tinnefeld, D. Kossmann, J. Böse, and H. Plattner. Parallel

join executions in RAMCloud. In Workshops Proceedings of

the 30th International Conference on Data Engineering, pp.

182–190, 2014.

[43] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using RDMA and HTM. In

Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 87–104, New York, NY, USA,

2015. ACM.

[44] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,

Y. Dai, and L. Zhou. GraM: Scaling graph computation to the

trillions. SoCC ’15, pages 408–421, 2015.

https://code.osu.edu/pythia/core
https://www.openfabrics.org/downloads/qperf/
https://linux.die.net/man/7/rsocket

