
(12) United States Patent
Aslam et al.

USOO9727523B2

US 9,727,523 B2
Aug. 8, 2017

(10) Patent No.:
(45) Date of Patent:

(54) REMOTE DIRECT MEMORY ACCESS
(RDMA) OPTIMIZED HIGH AVAILABILITY
FOR IN-MEMORY DATA STORAGE

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Muhammad Sohaib Aslam, Ajax
(CA); Steve Langridge, Markham
(CA); Tiia Salo, Cary, NC (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 198 days.

(21) Appl. No.: 14/525.207

(22) Filed: Oct. 27, 2014

(65) Prior Publication Data

US 2016701 19422 A1 Apr. 28, 2016

(51) Int. Cl.
G06F 5/67 (2006.01)
H04L 29/08 (2006.01)
G06F 3/06 (2006.01)
H04L 29/12 (2006.01)
GO6F 15/173 (2006.01)

(52) U.S. Cl.
CPC G06F 15/167 (2013.01); G06F 3/061

(2013.01); G06F 3/067 (2013.01); G06F
3/0655 (2013.01); H04L 67/10 (2013.01);
H04L 67/1097 (2013.01); G06F 15/17331

(2013.01); H04L 61/25 (2013.01)
(58) Field of Classification Search

CPC G06F 15/167; G06F 3/067; G06F 3/061;
G06F 3/0655; G06F 15/17331; H04L

67/1097; H04L 67/10; H04L 61/25
See application file for complete search history.

160 Addressing
(Data, Secondary

190A

Network
Adapter

Transation “
Data

170
Primary Server

Optimization

(56) References Cited

U.S. PATENT DOCUMENTS

7,787,383 B2 8, 2010 Bali et al.
8,627, 136 B2 1/2014 Shankar et al.
9,317,536 B2 * 4/2016 Sirer GO6F 17,30283

2012/0166886 A1* 6, 2012 Shankar G06F 11.2028
T14? 43

2014/0047263 A1 2/2014 Coatney et al.
2015, 0169223 A1* 6/2015 Srikantaiah G06F 12.1081

T11 147
2015/0261720 A1* 9/2015 Kagan G06F 13,4221

T10,308

* cited by examiner

Primary Examiner — Tauqir Hussain
Assistant Examiner — Michael A. Keller
(74) Attorney, Agent, or Firm — Steven M. Greenberg,
Esq.; CRGO Law

(57) ABSTRACT

A method for RDMA optimized high availability for in
memory storing of data includes receiving RDMA key-value
store write requests in a network adapter of a primary
computing server directed to writing data to an in-memory
key-value store of the primary computing server and per
forming RDMA write operations of the data by the network
adapter of the primary computing server responsive to the
RDMA key-value store write requests. The method also
includes replicating the RDMA key-value store write
requests to a network adapter of a secondary computing
server, by the network adapter of the primary computing
server. Finally, the method includes providing address trans
lation data for the in-memory key-value store of the primary
computing server from the network adapter of the primary
computing server to the network adapter of the secondary
computing server.

6 Claims, 2 Drawing Sheets

180

(Failover)
RDMA
Readata

12OB

In-Memory
Storage

Data

Network
Adapter

130B

Secondary Server

U.S. Patent Aug. 8, 2017 Sheet 1 of 2 US 9,727,523 B2

160 180 Addressing
(Data, Secondary

Server)

(Failover)
RDMA RDMA
Write (Data Read(Data

90A 190B

Optimization
Data

Network
Adapter

Primary Server

Address
Transiation

Data
170 Secondary Server

FIG. 1

Client

23OA

In Memory
Storage

21 OA
Primary Secondary

Server Server
H

2 Network 250 22OB
Adapter Adapter

240A Storing storing 240B
Engine Engine

3OO Optimization Optimization 3OO

FIG. 2

U.S. Patent

305

Get RDMA Write
Request from
Client (Data)

Return Addressing
(Data, Secondary

Server)

335

Get RDMA Update
Request from Client
(Address, Data)

Aug. 8, 2017 Sheet 2 of 2

31 O

Replicate Request
to Secondary

Server

Send Address to
Secondary Server

FIG. 3A
340

Replicate Request
to Secondary

Server

US 9,727,523 B2

315

RDMA Write
(Data)

Get Address in
In-Memory
Storage

345

RDMA Update
(Address, Data)

350
Get Replicated
RDMA Update

Request
(Address, Data)

370

Get FailOVer RDMA
Read Request

(Address)

FIG. 3B

355

Get Translation
Delta

375

GetTranslation
Delta

Return Data to
Client

FIG. 3D

360

Translate Address
(Delta)

RDMA Update
(Translated

Address, Data)

38O

Translate Address
(Delta)

RDMA Read
(Translated
Address)

US 9,727,523 B2
1.

REMOTE DIRECT MEMORY ACCESS
(RDMA) OPTIMIZED HIGH AVAILABILITY

FOR IN-MEMORY DATA STORAGE

BACKGROUND OF THE INVENTION

Field of the Invention
The present invention relates to the in-memory storage of

data in an application server and more particularly to Sup
porting high availability while storing application related
data in-memory in an application server.

Description of the Related Art
An application server is a Software system executing upon

a hardware platform that exposes business logic to client
applications through various protocols such as the hypertext
transfer protocol (HTTP). While a Web server mainly sup
port the transmitting of hypertext markup language (HTML)
defined pages to requesting browser clients for display in a
browser, an application server provides access to business
logic for use by client application programs. In this regard,
the application program can use Supplied business logic just
as it would call a method on an object internally disposed on
a Supporting client device.

In most cases, an application server exposes its business
logic through a component application programming inter
face (API) and the application server manages its own
resources. Therefore, the application server also provides
gate-keeping services including security, transaction pro
cessing, resource pooling, and messaging. The application
server also must provide performance-enhancing services
such as an in-memory store. Finally, like a Web server, an
application server may also support scalability and fault
tolerance including high availability.

Advanced application servers provides for in-memory
storing of data to support lightning fast data access. In
memory storing can be provided globally to all logic
resources of the application server, or at the container level
So as to Support only a Subset of the instances of logic
resources in the application server. Recent advances in
in-memory stores for application servers utilize direct
memory access (DMA) techniques. One such technique
includes remote DMA. In computing, remote direct memory
access (RDMA) is a direct memory access from the memory
of one computer into that of another without involving either
one's operating system.

Thus, RDMA permits high-throughput, low-latency net
working, which is especially useful in massively parallel
computer clusters. RDMA Supports Zero-copy networking
by enabling the network adapter to transfer data directly to
or from application memory, eliminating the need to copy
data between application memory and the data buffers in the
operating system. Such transfers require no work to be done
by the central processing units (CPUs), key-value stores, or
context Switches, and transfers continue in parallel with
other system operations. When an application performs an
RDMA Read or Write request, the application data is deliv
ered directly to the network, reducing latency and enabling
fast message transfer.

Distributed key/value pair store systems that exploit one
sided RDMA such as those found in an in-memory store
engine of an application server can directly read from and
write to the server's memory. This direct memory access is
performed by utilizing RDMA between the network adapter
of the server and the memory of the server without involving
the CPU or CPUs of the server. Consequently, ultra high
throughput and ultra low latency results. However, high
availability remains an important problem for one-sided

10

15

25

30

35

40

45

50

55

60

65

2
RDMA access. Because the server processor is not involved
there are no software-level hooks for high availability rep
lication, which leaves the key-value store vulnerable to
hardware failures. Further, involving the server processor
even minimally can cause dramatic performance degrada
tion, measured in millions of requests per second. Therefore
software-based high availability schemes are undesirable
when seeking performance through RDMA Supported in
memory stores.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention address deficien
cies of the art in respect to in-memory stores in an applica
tion server and provide a novel and non-obvious method,
system and computer program product for RDMA optimized
high availability for in-memory storing. In an embodiment
of the invention, a method for RDMA optimized high
availability for in-memory storing of data is provided. The
method includes receiving RDMA key-value store write
requests in a network adapter of a primary computing server
directed to writing data to an in-memory key-value store of
the primary computing server and performing RDMA write
operations of the data by the network adapter of the primary
computing server responsive to the RDMA key-value store
write requests. The method also includes replicating the
RDMA key-value store write requests to a network adapter
of a secondary computing server, by the network adapter of
the primary computing server. Finally, the method includes
providing address translation data for the in-memory key
value store of the primary computing server from the
network adapter of the primary computing server to the
network adapter of the secondary computing server.

In one aspect of the embodiment, in response to a deter
mination that the primary computing server has failed, an
RDMA key-value store read request is received from a
requesting client in the network adapter of the secondary
computing server in respect to data stored in the in-memory
key-value store of the primary computing server. Thereafter,
because there are no guarantees that the data in the primary
and secondary computing servers are written into the same
address in both servers, an address for the data stored in the
in-memory key-value store of the primary computing server
is translated to an address in an in-memory key-value store
of the secondary computing server utilizing the address
translation data and an RDMA key-value store read opera
tion is performed at the translated address. Finally, the data
produced by the RDMA key-value store read operation is
returned by the network adapter of the secondary computing
server to the requesting client. Optionally, a local address
table of the network adapter of the secondary computing
server is translated based upon the address translation data
all subsequent RDMA key-value store requests for data in
the in-memory key-value store of the primary computing
server are processed in the network adapter of the secondary
computing server utilizing the translated local address table.

In another aspect of the embodiment, an RDMA key
value store update request is received in the network adapter
of the primary computing server directed to data stored in
the in-memory key-value store of the primary computing
server. Thereafter, in response to the RDMA key-value store
update request, an RDMA key-value store update operation
is performed on the stored data by the network adapter of the
primary computing server. As before, the RDMA key-value
store update request is replicated to the network adapter of
the secondary computing server, by the network adapter of
the primary computing server and the addressing for the

US 9,727,523 B2
3

stored data in the in-memory key-value Store of the primary
computing server is translated to an address in an in-memory
key-value store of the secondary computing server utilizing
the address translation data. Finally, the stored data is
updated in the in-memory key-value store of the secondary
server utilizing the translated addressing.

In another embodiment of the invention, an application
server data processing system is configured for RDMA
optimized high availability for in-memory storing. The
system includes a primary computing server with a corre
sponding in-memory key-value store and at least one pro
cessor and network adapter, and also a secondary computing
server with a corresponding in-memory key-value store and
at least one processor and a network adapter. The system
also includes an RDMA optimized high availability module
disposed in each of the network adapters. The module
includes program code enabled to receive RDMA key-value
store write requests in the network adapter of a primary
computing server directed to writing data to the in-memory
key-value store of the primary computing server, to perform
RDMA write operations of the data by the network adapter
of the primary computing server responsive to the RDMA
key-value store write requests, to replicate the RDMA
key-value store write requests to the network adapter of the
secondary computing server, by the network adapter of the
primary computing server, and to provide address translation
data for the in-memory key-value store of the primary
computing server from the network adapter of the primary
computing server to the network adapter of the secondary
computing server.

Additional aspects of the invention will be set forth in part
in the description which follows, and in part will be obvious
from the description, or may be learned by practice of the
invention. The aspects of the invention will be realized and
attained by means of the elements and combinations par
ticularly pointed out in the appended claims. It is to be
understood that both the foregoing general description and
the following detailed description are exemplary and
explanatory only and are not restrictive of the invention, as
claimed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute part of this specification, illustrate embodi
ments of the invention and together with the description,
serve to explain the principles of the invention. The embodi
ments illustrated herein are presently preferred, it being
understood, however, that the invention is not limited to the
precise arrangements and instrumentalities shown, wherein:

FIG. 1 is a pictorial illustration of a process for RDMA
optimized high availability for in-memory storing;

FIG. 2 is a schematic illustration of a application server
data processing system configured for RDMA optimized
high availability for in-memory storing; and,

FIGS. 3A through 3D, taken together, are a flow chart
illustrating a process for RDMA optimized high availability
for in-memory storing.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the invention provide for RDMA opti
mized high availability for in-memory storing. In accor
dance with an embodiment of the invention, each RDMA
key-value store write request received in a network adapter

10

15

25

30

35

40

45

50

55

60

65

4
of a primary computing server to perform an RDMA write
operation of data to an in-memory key-value Store defined in
the memory of the primary server, can be replicated to a
network adapter of a secondary computing server. Further,
address translation data for the in-memory key-value store
of the primary computing server can be provided to the
network adapter of the secondary computing server. In this
way, during failover from the primary server to the second
ary server, access to the data of the in-memory key-value
store in the memory of the secondary server can continue as
if it were the in-memory key-value store in the memory of
the primary server without requiring intervention of the CPU
of the primary server.

In further illustration, FIG. 1 pictorially shows a process
for RDMA optimized high availability for in-memory stor
ing. As shown in FIG. 1, a primary server 110A can
implement an in-memory key-value store 120A accessible
through RDMA operations by a corresponding network
adapter 130A. Likewise, a secondary server 110B can imple
ment an in-memory key-value store 120B accessible through
RDMA operations by a corresponding network adapter
130B. Optimization logic 140 can execute in the memory of
the primary and secondary servers 110A, 110B. The opti
mization logic 140 can process RDMA requests from a
coupled client 150, such as write, read and update.

Initially, the client 150 can issue an RDMA write request
190A to the primary server 110A to write data to the
in-memory key-value store 120A. The optimization logic
140 can direct the network adapter 130A to perform the
RDMA write operation for the data and the network adapter
130A can return addressing data 160 to the client 150,
including an address of the data in the in-memory key-value
store 120 and an address of the secondary server 110B.
Further, the optimization logic 140 can replicate the RDMA
write request 190A to the network adapter 130B along with
address translation data 170 indicating the address in the
in-memory key-value store 120A at which the data is stored.
The optimization logic 140 in the secondary server 110B can
process the replicated RDMA write request 190A and can
determine a delta between the address translation data 170
and the address at which the data of the replicated RDMA
write request 190A has been stored in the in-memory
key-value store 120B.

Thereafter, RDMA update requests replicated by the
optimization logic 140 from the network adapter 130A of the
primary server 110A to the network adapter 130B of the
secondary server 110B can be processed by translating the
address of the RDMA update request utilizing the delta
before directing an RDMA update for the data in the
in-memory key-value store 120B. Of note, the client 150 can
store a local hash map that for each key stored therein in
respect to data stored in one of the servers 110A, 110B
contains a remote pointer (i.e. address) to the data corre
sponding to the key in the primary server 110A. As such, the
client upon failover to the secondary server 120 may access
the in-memory key-value store 120B of the secondary server
110B directly using the remote pointers/addresses of the
local hash map.
To that end, the client 150 repeatedly can issue to the

primary server 110A RDMA read requests for data disposed
at respective addresses of the primary server 110A. How
ever, to the extent that the primary server 110A becomes
non-responsive, the client 150 utilizing the address of the
secondary server 110B can issue a failover RDMA read
request 190B to the secondary server with the address of the
requested data. The optimization logic 140 in turn can
translate the address of the data to a corresponding address

US 9,727,523 B2
5

in the in-memory key-value store 120B utilizing the delta
between addresses in the in-memory key-value store 120A
and the in-memory key-value store 120B. Using the trans
lated address the optimization logic 140 can direct the
network adapter 130B to perform an RDMA read operation
at the translated address and the network adapter 130B can
return the retrieved data 180 at the translated address to the
client 150. Optionally, a local translation table maintained in
the client 150 can be translated in response to a failover with
the delta so as to issue subsequent RDMA read requests and
update requests to the secondary server 110 with an already
translated address.

The process described in connection with FIG. 1 can be
implemented in an application server data processing sys
tem. In yet further illustration, FIG. 2 schematically shows
an application server data processing system configured for
RDMA optimized high availability for in-memory storing.
The system includes primary and secondary application
servers 210A, 210B coupled to one another over a computer
communications network 250. The primary and secondary
application servers 210A, 210B each include memory and at
least one processor and also include respective network
adapters 220A, 220B. The primary and secondary applica
tion servers 210A, 210B also include respective storing
engines 240A, 240B managing correspondingly different
in-memory key-value stores 230BA, 230B into which appli
cation server objects are key-value stored.

Importantly, an optimization module 300 can be included
as part of the network adapter firmware of each of the
application servers 210A, 210B. The optimization module
300 can include program code that when executed in the
memory of the application servers 210A, 210B is enabled to
receive an RDMA write request for data from a client 260.
The program code further can be enabled to direct the
network adapter 220A to performan RDMA write operation
in the in-memory key-value store 230A resulting in an
address at which the data is stored in the in-memory key
value store 230A. The program code yet further can replicate
the RDMA write request for the data to the network adapter
220B with the address such that the network adapter 220B
can perform an RDMA write operation of the data into the
in-memory key-value Store 230 resulting in an address at
which the data is stored in the in-memory key-value Store.

Utilizing the address received from the optimization logic
300 of the network adapter 220A, the optimization logic 300
of the network adapter 220B can determine a delta between
the addresses acting as address translation data. Finally, the
program code can return not only the address of the data in
the in-memory key-value store 230A to the client, but also
the program code can return to the client 260 the address of
the secondary application server 210B in the event of a
failure of the primary application server 210A. In this
regard, in response to a failure of the primary application
server 210A, the client 260 can issue an RDMA read request
to the secondary application server 210B with the address of
the sought after data in the in-memory key-value store 230A.
Using the delta, the network adapter 220B can translate the
address to a valid address in the in-memory key-value store
230B and the network adapter 220B can retrieve the sought
after data in the in-memory key-value store 230B.

In even yet further illustration of the operation of the
optimization module 300, FIGS. 3A through 3D, taken
together, are a flow chart illustrating a process for RDMA
optimized high availability for in-memory storing. Begin
ning in block 305, an RDMA write request for data can be
received from a client in a network adapter of a primary
computing server and in block 310, the RDMA write request

5

10

15

25

30

35

40

45

50

55

60

65

6
can be replicated to a network adapter of a secondary
computing server. In block 315, an RDMA write operation
can be performed by the network adapter of the primary
computing server on the data resulting in an address of
storage of the data in the in-memory key-value store of the
primary computing server. In block 320, the address can be
retrieved and in block 325 the address can be provided to the
network adapter of the secondary computing server with
which the network adapter of the secondary computing
server can compute a delta between the addresses in the
in-memory key-value store of the primary computing server
and those of the secondary computing server. Finally, the
address of the data and an address of the secondary com
puting server can be returned to the requesting client.

Turning now to FIG. 3B, an RDMA update request an be
received in the network adapter of the primary computing
server in block 335 an RDMA update request specifying an
update of data at a specified address can be received in the
network adapter of the primary computing server. In block
340 the update request can be replicated to the network
adapter of the secondary computing server in response to
which the network adapter of the secondary computing
server can update data at the address provided adjusted to
account for the delta. Likewise, in block 345 the network
adapter of the primary computing server can perform an
RDMA update of the data at the specified address.

In this regard, as shown in FIG. 3C, at block 350 the
replicated RDMA update request can be received in the
network adapter of the secondary computing server along
with an address in the in-memory key-value store of the
primary computing server at which the data to be updated
can be located. In block 355 the translation delta previously
computed by the network adapter of the secondary comput
ing server can be retrieved and in block 360 the received
address can be translated to an address of the in-memory
key-value store of the secondary computing server. Finally,
in block 365 an RDMA update operation can be performed
by the network adapter of the secondary computing server
on data at the translated address.

Referring now to FIG. 3D, in block 370 a failover RDMA
read request can be received from the client at the network
adapter of the secondary computing server. IN block 375,
the translation delta previously computed can be retrieved
and applied to the address of the RDMA read request at
block 380. Subsequently, in block 385 the network adapter
can perform an RDMA read operation at the translated
address. Finally, data retrieved from the in-memory key
value store of the secondary computing server resulting from
the RDMA read operation can be returned to the client in
block 390.
The present invention may be embodied within a system,

a method, a computer program product or any combination
thereof. The computer program product may include a
computer readable storage medium or media having com
puter readable program instructions thereon for causing a
processor to carry out aspects of the present invention. The
computer readable storage medium can be a tangible device
that can retain and store instructions for use by an instruction
execution device. The computer readable storage medium
may be, for example, but is not limited to, an electronic
storage device, a magnetic storage device, an optical storage
device, an electromagnetic storage device, a semiconductor
storage device, or any Suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the

computer readable storage medium includes the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable

US 9,727,523 B2
7

programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any Suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, Such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro

10

15

25

30

35

40

45

50

55

60

65

8
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.
The computer readable program instructions may also be

loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Finally, the terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises'
and/or "comprising,” when used in this specification, specify
the presence of Stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the

US 9,727,523 B2

invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
Suited to the particular use contemplated.

Having thus described the invention of the present appli
cation in detail and by reference to embodiments thereof, it
will be apparent that modifications and variations are pos
sible without departing from the scope of the invention
defined in the appended claims as follows:
We claim:
1. An application server data processing system config

ured for remote direct memory access (RDMA) optimized
high availability for in-memory storing of data, the system
comprising:

a primary computing server with a corresponding in
memory key-value store storing associative arrays of
data each associative array including a key associated
with a single value, and at least one processor and
network adapter,

a secondary computing server with a corresponding in
memory key-value store and at least one processor and
a network adapter, and,

an RDMA optimized high availability module disposed in
each of the network adapters, the module comprising
program code enabled to receive RDMA key-value
store write requests in the network adapter of a primary
computing server directed to writing data to the in
memory key-value store of the primary computing
server, to perform RDMA write operations of the data
by the network adapter of the primary computing server
responsive to the RDMA key-value store write
requests, to replicate the RDMA key-value store write
requests to the network adapter of the secondary com
puting server, by the network adapter of the primary
computing server, to provide from the network adapter
of the primary computing server to the network adapter
of the secondary computing server, address translation
data indicating the address in the in-memory key-value
store of the primary computing server at which the data
is stored, to receive an RDMA key-value store update
request in the network adapter of the primary comput
ing server directed to data stored in the in-memory
key-value store of the primary computing server, to
performan RDMA key-value store update operation on
the stored data by the network adapter of the primary
computing server responsive to the RDMA key-value
store update request, to replicating the RDMA key
value store update request to the network adapter of the
secondary computing server, by the network adapter of
the primary computing server, to translate addressing
for the stored data in the in-memory key-value store of
the primary computing server to an address in the
in-memory key-value store of the secondary computing
server utilizing the address translation data and to
update the stored data in the in-memory key-value store
of the secondary server utilizing the translated address
ing.

2. The system of claim 1, wherein the program code of the
module is further enabled to receive from a requesting client
an RDMA key-value store read request in the network
adapter of the secondary computing server in respect to data
stored in the in-memory key-value Store of the primary
computing server, to translate an address for the data stored
in the in-memory key-value store of the primary computing
server to an address in the in-memory key-value store of the
secondary computing server utilizing the address translation
data, to performan RDMA key-value store read operation at

10

15

25

30

35

40

45

50

55

60

65

10
the translated address, and to return by the network adapter
of the secondary computing server the data produced by the
RDMA key-value store read operation to the requesting
client.

3. The system of claim 2, wherein the program code of the
module is further enabled to translate a local address table of
the client based upon the address translation data and to
forward all subsequent RDMA key-value store requests for
data in the in-memory key-value store of the primary
computing server to the network adapter of the secondary
computing server utilizing the translated local address table.

4. A computer program product for remote direct memory
access (RDMA) optimized high availability for in-memory
storing of data, the computer program product comprising a
non-transitory computer readable storage medium having
program instructions embodied therewith, the program
instructions executable by a device to cause the device to
perform a method comprising:

receiving RDMA key-value store write requests in a
network adapter of a primary computing server directed
to writing data to an in-memory key-value store storing
associative arrays of data of the primary computing
server each associative array including a key associated
with a single value;

performing RDMA write operations of the data by the
network adapter of the primary computing server
responsive to the RDMA key-value store write
requests;

replicating the RDMA key-value store write requests to a
network adapter of a secondary computing server, by
the network adapter of the primary computing server,

providing from the network adapter of the primary com
puting server to the network adapter of the secondary
computing server, address translation data indicating
the address in the in-memory key-value store of the
primary computing server at which the data is stored;

receiving an RDMA key-value store update request in the
network adapter of the primary computing server
directed to data stored in the in-memory key-value
store of the primary computing server;

performing an RDMA key-value store update operation
on the stored data by the network adapter of the primary
computing server responsive to the RDMA key-value
store update request;

replicating the RDMA key-value store update request to
the network adapter of the secondary computing server,
by the network adapter of the primary computing
server;

translating addressing for the stored data in the
in-memory key-value store of the primary computing
server to an address in an in-memory key-value store of
the secondary computing server utilizing the address
translation data; and,

updating the stored data in the in-memory key-value Store
of the secondary server utilizing the translated address
ing.

5. The computer program product of claim 4, wherein the
program instructions further cause the device to perform:

receiving from a requesting client an RDMA key-value
store read request in the network adapter of the sec
ondary computing server in respect to data stored in the
in-memory key-value store of the primary computing
server;

translating an address for the data stored in the in-memory
key-value store of the primary computing server to an

US 9,727,523 B2
11

address in an in-memory key-value store of the sec
ondary computing server utilizing the address transla
tion data;

performing an RDMA key-value store read operation at
the translated address; and, 5

returning by the network adapter of the secondary com
puting server the data produced by the RDMA key
value store read operation to the requesting client.

6. The computer program product of claim 5, wherein the
program instructions further cause the device to perform: 10

translating a local address table of the client based upon
the address translation data; and,

forwarding all subsequent RDMA key-value store
requests for data in the in-memory key-value store of
the primary computing server to the network adapter of 15
the secondary computing server utilizing the translated
local address table.

k k k k k

