
Orchestration by Approximation
Mapping Stream Programs onto Multicore Architectures

S. M. Farhad1,3 ∗ Yousun Ko2 § Bernd Burgstaller2 § Bernhard Scholz1 ‡

1The University of Sydney 2Yonsei University 3NICTA
Sydney, Australia Seoul, Korea Locked Bag 9013

{smfarhad, scholz}@it.usyd.edu.au {yousun.ko, bburg}@cs.yonsei.ac.kr Alexandria NSW 1435, Australia

Abstract
We present a novel 2-approximation algorithm for deploying
stream graphs on multicore computers and a stream graph trans-
formation that eliminates bottlenecks. The key technical insight is
a data rate transfer model that enables the computation of a “closed
form”, i.e., the data rate transfer function of an actor depending on
the arrival rate of the stream program. A combinatorial optimiza-
tion problem uses the closed form to maximize the throughput of
the stream program. Although the problem is inherently NP-hard,
we present an efficient and effective 2-approximation algorithm
that provides a lower bound on the quality of the solution. We in-
troduce a transformation that uses the closed form to identify and
eliminate bottlenecks.

We show experimentally that state-of-the art integer linear pro-
gramming approaches for orchestrating stream graphs are (1) in-
tractable or at least impractical for larger stream graphs and larger
number of processors and (2) our 2-approximation algorithm is
highly efficient and its results are close to the optimal solution for
a standard set of StreamIt benchmark programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors Compilers

General Terms Languages, Algorithms, Performance

Keywords StreamIt, multicore, stream programming

1. Introduction
Multicore processors have become the industry standard because
the von Neumann computing model [2] of uniprocessor architec-

∗ NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.
§ Research partially supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-
0005234), and the OKAWA Foundation Research Grant (2009).
‡ Research partially supported by the Australian Research Council through
ARC DP grant DP1096445.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

tures has ceased to scale effectively. Example systems include the
IBM Cell BE processor with 9 cores [13], the IBM Power7 with 8
cores [14], the Sun UltraSPARC T3 with 16 cores [26], NVIDIA’s
GeForce GTX 480 that provides 15 streaming processors each with
32 CUDA cores [23], and the Cisco CRS-1 and CRS-3 routers that
utilize Tensilica’s Metro and QuantumFlow processors with 188
and 40 4-threaded cores [8, 10]. Intel and AMD are already pro-
ducing x86 systems with 8 and 12 cores respectively.

Sequential programming languages are ill-suited to multicore
architectures, because they assume a single instruction stream and
a single, uniform memory system. Identifying coarse-grained par-
allelism for efficient multicore execution is left to the programmer
and the compiler. Multicore architectures vary in their communi-
cation primitives and in the number and capabilities of their CPU
cores. Sequential programming languages provide insufficient par-
allel hardware abstractions, which greatly hampers performance
and portability of software on multicore architectures.

The stream programming paradigm has turned out to be an ef-
fective approach for programming multicore architectures. Stream
programming languages facilitate application domains character-
ized by regular sequences of data, such as digital signal pro-
cessing, audio, video, graphics and networking. Examples of
stream programming languages and language extensions include
StreamIt [30], Brook [5], Baker [7], StreamFlex [27], Cg [21] and
SPUR [36].

In our work we use StreamIt, which represents a program as
a set of actors that interact through FIFO data channels (see Fig-
ure 1). During program execution, actors are invoked repeatedly in
a periodic schedule [3]. Because each actor has a separate program
counter and an independent address space, dependencies between
actors are made explicit by the data channels. StreamIt employs
the synchronous data-flow model (SDF, [19]), which requires the
number of data items produced and consumed by each actor to be
known a-priori (with StreamIt this information is already specified
in the source code). Compilers can then leverage the static depen-
dence information to orchestrate parallel execution.

The major optimization objective with stream programs is to
maximize data throughput. Although stream programs contain an
abundance of parallelism, obtaining an efficient mapping onto par-
allel architectures is nevertheless a challenging problem. The gains
obtained from parallel execution are easily overshadowed by the
costs of communication and synchronization. Resource limitations
of the system must be incorporated into the mapping process to
avoid stalls and load-imbalances. Resource limitations of shared-
memory multiprocessors include processing capabilities and mem-
ory bandwidth. A compiler must take into account the structural
properties of actors and actor dependencies to resolve bottlenecks
that constrain the throughput of a stream program. Stream pro-

357

grams contain task, data and pipeline parallelism, and it is critical
for a compiler to leverage a synergistic combination while avoiding
the hazards associated with each.

Recently, significant research effort has been spent for orches-
trating stream graphs on multicore architectures [6, 7, 11, 12, 16,
18, 28, 31, 32, 34, 35]. It has been shown in [18] how the unfold-
ing and partitioning of actors onto a multicore architecture can be
formulated as an Integer Linear Programming (ILP) problem. This
ILP formulation does not take into account communication costs
between actors. The ILP solution-space for unfolding and parti-
tioning of actors grows exponentially in the number of processors,
actors and data channels. Our experiments with existing methods
using CPLEX indicate that ILP formulations become intractable or
at least impractical already for three or four cores (see also Table 2
where P# is the number of cores and tILP is the CPLEX solve
time). An approach that approximates the optimal solution of the
ILP formulation seems therefore desirable. In contrast to previous
work, our work uses a data transfer model that sets in relation the
input and output data rates of actors. In our model, we maximize
the arrival rate whereas previous work optimizes makespan, i.e.,
the runtime of the longest running processor, which is an indirect
measure of arrival rate and throughput.

This paper makes the following contributions:

• a novel data rate transfer model for stream programs that intro-
duces data rate functions for actors that depend on the arrival
rate of the stream program,

• a quantitative analysis to identify bottlenecks and “hot regions”
in stream programs,

• a transformation for stream programs that is region based for
eliminating bottlenecks and, hence, reduces communication
costs, and

• a 2-approximation algorithm that maps actors onto a parallel
system by maximizing the arrival rate of the stream program.

Experiments show that our approximation approach solves the or-
chestration problem instantly (i.e., within milliseconds), with a so-
lution that achieves 95–100% of the throughput obtained by an ILP
formulation.

The paper is organized as follows: in Section 2 we motivate
problems and optimization opportunities with stream program or-
chestration on multicore architectures. Section 3 introduces our an-
alytical performance model. In Section 4 we discuss the elimina-
tion of bottlenecks. Section 5 contains the actor allocation problem
(AAP) and our approximation thereof. In Section 6 we discuss the
experimental results. We survey related work in Section 7 and draw
our conclusions in Section 8. We provide a glossary in Appendix B.

2. Orchestration
The motivation for our approximation algorithm for actor unfolding
and partitioning are scalability problems with the existing, optimal
ILP formulation. We observed impractical solve times already for
a program consisting of 26 actors on 4 processors (see Section 6).
However, a recent survey ([29]) on the characteristics of stream
programs reports increasing program sizes of up to 2868 actors
per program. In conjunction with the semiconductor industry’s
projected increases in core counts an approach that approximates
the optimal solution of the ILP formulation is important.

We motivate our approach using a simple StreamIt program
consisting of four actors depicted in Figure 1. Let us assume that
actors 1 and 4 are stateful and actors 2 and 3 are stateless. Only
stateless actors may be duplicated to exploit data-parallelism, be-
cause a stateful actor propagates local state information between
actor invocations. As a result, every invocation of a stateful actor

15

260

360

45

void->void pipeline Program() {

add IntSource;

add ID1;

add ID2;

add IntPrinter;

}

void->int filter IntSource() {

int x;

init {x=0;}

work push 1 {push (x++); }

}

int->int filter ID1() {

work push 1 pop 1 {

push(pop());

//do expensive work

}

}

int->int filter ID2() {

work push 1 pop 1 {

push(pop());

//do expensive work

}

}

int->void filter IntPrinter() {

work pop 1 { print(pop());}

}

(a) (b)

Figure 1. (a) Stream graph (b) Corresponding StreamIt source
code.

115

s16

22

60
21

60

23

60

j16

s26

32

60
31

60

33

60

j26

415

115

P2P1 P3

s16

22

60
21

60

23

60

31

60
32

60
33

60

j16

415

(a) (b)

Figure 2. (a) Integrated bottleneck resolution and actor allocation
approach of [18] (b) hot region bottleneck resolution.

depends on a previous invocation, and hence must not be dupli-
cated.

In Figure 1(a) actor execution times are depicted next to stream
graph nodes. Actors 2 and 3 consume more processing time (60
time units each) than actors 1 and 4. The stream program takes 130
time units when executed on a uniprocessor with a single invoca-
tion for all actors. Note that actors 2 and 3 will cause a bottleneck if
the program is executed on a multicore system due to the high exe-
cution costs. We refer to these actors as hot actors. To improve the
throughput of stream programs on multi-core systems, hot actors
are duplicated to spread the load evenly among processors. In this
example the hot actors form a hot region since they are adjacent to
each other.

An optimal allocation is presented in Figure 2(a) following the
method described in [18]. Actors 2 and 3 are duplicated two times,

358

totaling in three versions each. Splitters s1, s2 and joiners j1, j2 are
added to distribute data among the three versions of actors 2 and 3.
Nodes 21, 22, 23 constitute the three versions of actor 2 and nodes
31, 32, 33 constitute the three versions of actor 3. Node colors in-
dicate the processor allocation. In this example, the workloads as-
signed to processors P1, P2 and P3 are 141, 138 and 135 time units,
respectively, if we account a workload of 6 time units for split-
ters and joiners. We calculate speedups by dividing the weighted
uniprocessor execution-time by the load on the maximally loaded
processor. The weight of the uniprocessor execution-time is 3, since
the transformed program represents three invocations of the origi-
nal program. The maximally loaded processor is processor P1 with
141 time units. Hence, the obtained speedup for the stream graph
in Figure 2(a) is 3×130

141
= 2.77.

In our approach, the solution in Figure 2(a) is further improved
by combining actors 2 and 3 into a hot region. The result of dupli-
cating the hot region as a whole is depicted in Figure 2(b). Because
the overhead of joiner j1 and splitter s2 is avoided, the speedup in-
creases to 3×130

135
= 2.89. Our approach separates hot actor identi-

fication from actor allocation, which enables the duplication of hot
regions. In this way our method can achieve improved bottleneck
elimination over existing techniques.

Essential for the hot region transformation is a data transfer
model for actors that is able to identify hot actors. The data transfer
model permits the computation of closed forms that express the
output data rate of an actor as a function that depends solely on the
arrival rate of the whole program, i.e., the closed form incorporates
all immediate and intermediate data transfer dependencies of an
actor. With the closed form the allocation problem simplifies as
well since the topology of the graph does not need to be considered.
An overview of the proposed approach to statically optimize the
throughput of a stream program is illustrated in Figure 3.

Linear Functional Equation Solver

Bottleneck Resolver

Actor Allocation on Processors

Actor Scheduling for Processors

Figure 3. Framework overview.

Our static optimization consists of four components: a linear
functional equation solver, a bottleneck resolver, actor allocation
and actor scheduling. An analytical performance model is created
for a stream program that employs a linear functional equation
solver to compute the closed form of data transfers rates in the
stream program. After computing closed forms, we perform a quan-
titative analysis to detect bottlenecks and duplicate hot regions. The
remaining steps are the mapping of actors to processors via an ap-
proximation algorithm and computing the schedule using standard
techniques.

3. Data Transfer Model
The dataflow model [9] represents a program as a stream graph
G(V, E) whose vertices V = {1, . . . , n} are called actors and
whose edges E ⊆ V ×V are called channels. A channel (i, j) ∈ E

queues data elements called tokens which are passed from the out-
put of computation i to the input of computation j. Synchronous
dataflow (SDF, [3, 19]) restricts the dataflow model by fixing the
number of consumed tokens denoted by ci and the number of
produced tokens denoted by pi of an actor i at compile time.
StreamIt [30] employs the SDF model except for the following
differences: (1) StreamIt has a non-consuming read (peek) opera-
tion from the input channel similar to the computation model intro-
duced in [17], (2) the number of tokens consumed and produced are
specified for actors rather than along data channels, and (3) stream
graphs in StreamIt are “structured”, i.e., they are composites of fil-
ters, pipelines, split/joins, and feedback loops.

There is a cornucopia of scheduling work for synchronous
dataflow [6, 11, 16, 18, 19, 24, 31, 32] ensuring that a schedule
requires finite resources for storing tokens along channels, and that
actors do not dead-lock whilst executing the schedule. A periodic
static schedule [19] consists of a finite sequence of actor invoca-
tions; the periodic schedule is computed at compile time, invokes
each actor of the stream graph at least once, and produces no net
change in the system state, i.e., the number of tokens on each edge
is the same before and after executing the schedule. Hence, a pe-
riodic schedule can be executed ad-infinitum without exhausting
memory, and we refer to the state before and after the execution of
a periodic schedule as the steady-state.

A periodic schedule has a positive integer vector q ∈ Nn called
repetition vector [19] whose elements correspond to actors in the
stream graph. Element qi for all i ∈ {1, . . . , n} is equal to the
number of occurrences of actor i in the periodic schedule. Because
every actor needs to be invoked at least once in the schedule, qi is
greater than or equal to 1.

A parallel periodic schedule distributes the invocation of actors
on a parallel system and has a finite sequence of actor invocations
for each processor. Synchronization between processors is neces-
sary to wait for the longest running processor before executing the
next iteration of the periodic schedule. We refer to the time duration
of the longest running processor as make span Π, which affects the
performance (i.e., throughput) of the stream graph.

3.1 Performance of a Periodic Static Schedule
The performance of a periodic schedule may be determined by the
number of input tokens it can process in time duration Π. Without
loss of generality we assume there is a unique actor that solely reads
the input of the program and receives no input from other actors in
the stream graph. We refer to this actor as the start node and assign
it the ordinal number 1.

The arrival rate z of a periodic schedule measures the number
of input tokens processed in time duration Π and is obtained by

z =
ι1q1

Π
, (1)

where ι1 is the number of bytes1 read from the program input
for a single invocation of the start node. Note that ιi for all i ∈
{1, . . . , n}, is the product of the size of an input token in bytes
times the number of tokens ci consumed by an invocation of actor i.
The output data rate of actor i is defined by

ξi =
ωiqi

Π
, for all i ∈ {1, . . . , n}, (2)

where ωi represents the number of bytes produced by a single
invocation of actor i. Parameter ωi is the product of the size of
an output token in bytes and the number of tokens pi produced by
actor i for a single invocation.

An alternative measure of performance for stream programs is
the notion of throughput. Throughput of a stream program may be

1 SDF semantics implies static push and pop rates of actors.

359

defined as the sum of output data rates of its actors, i.e.,
Pn

i=1 ξi.
In Section 5, Eq. (14), we show that with an SDF model although
arrival rate and throughput are different optimization objectives, the
solutions are identical.

In this work, we seek a parallel periodic schedule that maxi-
mizes the arrival rate by placing actors on processors and trans-
forming the stream graph. Our approach relies on a performance
model of stream graphs that is able to compute the output data rate
of an actor as a linear function of the arrival rate, independent of a
concrete periodic schedule and the make span Π.

3.2 Model
Actors in the stream graph consume and produce a fixed number
of tokens for a single invocation in the schedule. Under the as-
sumption that we know the input data rate of an actor, we can
compute the output data rate using data rate transfer functions
Φi : R+ → R+, which are defined as x 7→ αix, where αi is
the ratio between the number of bytes produced and consumed for
a single invocation of actor i, i.e., αi = ωi

ιi
.

For example, all channels in Figure 1 are of type integer. The
push and pop rates of the second actor are 1. If we assume a 4-byte
integer representation, we get ι2 = 4·1 and ω2 = 4·1, i.e., invoking
the second actor once consumes 4 bytes from the input channel and
produces 4 bytes on the output channel. Hence, the parameter of
the data transfer function is 1, i.e., α2 = ω2

ι2
= 1, which implies

that the input data rate of the actor is equal to the output data rate.
An actor may have more than one outgoing channel, and SDF

semantics allows a fixed ratio for splitting the output rate of an
actor i among its outgoing channels. In our model, the data rate of
channel (i, j) ∈ E is given by term wijΦi(x), where weight wij

denotes the fraction of the output data rate of actor i that is diverted
from actor i to channel (i, j). If wij is zero, it denotes that there
is no dataflow between actor i and actor j. To conserve dataflow
in a stream program, it must hold that

Pn
j=1 wij = 1, for all

i ∈ {1, . . . , n}.
For example, the weights of the channels in Figure 2(b) are all

one except for edges (s1, 21), (s1, 22), and (s1, 23), whose weights
are 1

3
.

The input data rate of an actor i is the sum over all data rates
of the incoming channels of i, i.e.,

Pn
j=1 wjixj , where xj is the

output data rate of actor j. We obtain data rate equations by setting
the data rate transfer functions of an actor in relation to its input
and output data rates.

DEFINITION 1. The data rate equations of a stream graph are
defined as

x1 = Φ1 (z) and

xi = Φi

nX

j=1

wjixj

!
, for all i ∈ {2, . . . , n}, (3)

where the output data rate for actor i is xi ∈ R+, and z is the
arrival rate.

LEMMA 1. For a given periodic schedule, the output data rate ξ is
a solution of the data rate equations.

PROOF 1. To preserve the steady-state of a periodic schedule, the
number of consumed tokens ciqi of an actor i must be equal to the
number of received tokens

Pn
j=1 wjipjqj for all i ∈ {2, . . . , n}.

Hence, the following equations hold for a periodic schedule:

ciqi =

nX
j=1

wjipjqj , for all i ∈ {2, . . . , n}. (4)

The relationship between qi and ξi is established in Eq. (2) and is
transformed to qi = Π

ωi
ξi. We rewrite the data rate equations of

Eq. (4) to Eq. (3) for all i ∈ {2, . . . , n} as follows,
ciΠ
ωi

ξi =
Pn

j=1

wjipjΠ

ωj
ξj ⇒ ξi = ωi

ci

Pn
j=1

wjipj

ωj
ξj ⇒

ξi = αi

Pn
j=1 wjiξj ⇒ ξi = Φi

“Pn
j=1 wjiξj

”
since the ratio ωj

pj
is the byte size of an output token of actor j,

and it is equal among all predecessors j of actor i, the inverse pj

ωj

can be moved out of the sum reducing the term to αi. Substituting
Eq. (1) in Eq. (2) for the start node by eliminating q1 gives the
equation ξ1 = Φ1 (z) and the lemma follows.

3.3 Closed Form
A closed-form Φ∗

i : R+ → R+ of actor i is a data rate transfer
function that solely depends on arrival rate z of the dataflow pro-
gram, i.e., z 7→ α′

iz. With the existence of a closed form, the output
rate of an actor can be determined by knowing the arrival rate z. In
this work, the closed form is fundamental for placing actors on pro-
cessors and eliminating bottlenecks.

The solution of the simultaneous equation system in Eq. (3) is
a set of linear functions that depend on z which can be solved by
employing standard linear algebra. We introduce a new matrix A
with elements aik = αiwki and vector b with elements b1 = α1,
and bi = 0 for all i ∈ {2, . . . , n}.

LEMMA 2. The closed form of stream graph G is

α′ = (I − A)−1b (5)

where I is the identity matrix.

PROOF 2. We rewrite the data rate equations of Eq. (3) as

x = Ax + zb (6)

which is reduced to Ix = Ax + zb ⇒ (I − A)x = zb ⇒ x =
z(I − A)−1b, and the lemma follows.

For large numbers of actors, the computation of the inverse
of matrix A is expensive. An alternate method that computes the
closed form more efficiently is required for practical purposes.

LEMMA 3. For a program that has a periodic schedule, matrix
(I − A) is nonsingular.

Due to space limitations we only sketch the proof here. The
proof in Lemma 1 establishes a connection between the data rate
equations and the equilibrium of consumed and produced tokens
of actors. In [19] the equilibrium was expressed in form of a
topological matrix mapping the repetition vector to a null vector,
and it was shown that if the stream graph is connected, the rank of
the topology matrix is n − 1. This result can be used to argue that
the matrix (I − A) is nonsingular.

LEMMA 4. Given the repetition vector q of a stream program, the
parameter α′

i of the closed form is given by

α′
i =

ωiqi

ι1q1
(7)

PROOF 3. We set in relationship the data output rate of Eq. (1) and
the closed form. We substitute the arrival rate z by the right-hand
side of Eq. (2), i.e., α′

i as ξi
z

that further reduces to

ξi = α′
iz ⇒

ωiqi

Π
= α′

i
ιiq1

Π
⇒ α′

i =
ωiqi

ι1q1
(8)

By Lemma 4, the parameter α′ of the closed form may be com-
puted by knowing q, which is a property of the stream graph [19].

360

Fast solvers for computing the repetition vector of a stream graph
are known to compute solutions in linear time complexity for un-
structured graphs [3] and structured graphs [15]. Computing the pa-
rameter α′ by employing linear equation solvers exhibits a higher
computational complexity though fast equation solvers as used for
data flow analysis [25] might deliver sufficient performance in
practice.

For example, the second and third actor in Fig. 1 have data
transfer functions whose α-parameters are 1, i.e., the input data
rate is equal to the output data rate. As stated in the previous
sub-section, the output rate of an actor is expressed as a linear
functional equation system. Consider the third actor. The equation
of the third actor is x3 = Φ3(x2), which simplifies to x3 = x2

since α3 = 1. By expanding x2 and so forth, we obtain a closed
form x3 = z which implies that the output data rate of the third
actor is the arrival rate. Instead of performing Gaussian elimination
which exhibits a cubic runtime complexity to find the closed form
of the actor, we employ Eq. (8) that requires a repetition vector.
In our example, a most trivial periodic schedule can be found that
contains a single invocation for each actor. Hence, the repetition
vector of this periodic schedule is q = (1 1 1 1). Using the formula
from Eq. (8), we obtain α′

3 = ω3·q3
ι3·q1

= 1 and x3 = α′
3z = z.

3.4 Processor Utilization
For the bottleneck elimination we require the notion of processor
load incurred by the execution of actors depending on the input
data rate. We have an underlying assumption that the multi-core
system has the same execution time ti of an actor invocation i on all
parallel processors, and we obtain the execution time by profiling
(see Section 6).

In our model the measurement of utilization is in percentage
of the processor load. Assuming that a processor of the multi-
core system exclusively executes actor i, the load of this processor
would become 100% and the input data rate of actor i is ιi

ti
. Hence,

ιi
ti

bytes per second constitutes an upper bound for the input data
rate of actor i, i.e.,

Pn
j=1 wjixj ≤ ιi

ti
. This upper bound is used

in the following section, which discusses a quantitative model for
bottleneck elimination.

For the actor allocation and the bottleneck elimination we in-
troduce a processor utilization function Γi:R+ → R+, that maps
the input data rate of actor i to a processor load which is defined as
x 7→ γix, where

γi =
ti

ιi
, for all i ∈ {1, . . . , n}.

We observe that Γi(
ιi
ti

) represents a load of 100%, because ιi
ti

is
the upper bound of the input data rate.

For example, the parameter of the processor utilization function
of the second actor in Figure 1 is ι3

t3
= 4

60
= 0.066 and therefore

the maximal input data rate of actor 3 is 15 bytes per time unit.
For sake of readability, we define the processor load of actor i

depending on the arrival rate:

U1(z) = Γ1(z)

Ui(z) = Γi

nX

j=1

wjiΦ
∗
j (z)

!
, for all i ∈ {2, . . . , n}.

Due to the linearity of the processor utilization function, we obtain

Ui(z) = γi

nX

j=1

wjiα
′
j

!
z.

4. Elimination of Bottlenecks
The input data rate z of a stream program is limited by the processor
capacity of the cores and the memory bandwidth used by storing
tokens along channels. Bottlenecks limit the arrival rate of a stream
program although free processing capacity in the parallel system is
available. Hence, it is of key importance to eliminate bottlenecks in
order to maximize the arrival rate of a stream program.

We perform the elimination of bottlenecks in a stream graph
in two steps. In the first step, a quantitative analysis that is based
on the performance model described in Section 3 identifies bottle-
necks. In the second step, a stream graph transformation duplicates
hot-regions, i.e., sub-graphs of the stream graph that cause a bottle-
neck. After transforming the stream graph the arrival rate is bound
by the system resources.

4.1 Identification of Hot Actors
A quantitative analysis determines two types of upper bounds for
the arrival rate: (1) an upper bound that is imposed by an actor in
the stream graph, and (2) an upper bound that is imposed by the
processing capacity and memory bandwidth of the parallel system.
If the upper bound imposed by an actor is smaller than the upper
bound of the parallel system, then the actor is hot and causes a
bottleneck because free processing capacity is available but cannot
be utilized.

The upper bound ubi of the arrival rate for an actor i is dis-
cussed in the following. Assume that R is the maximum data rate
in bytes at which an actor can receive tokens. Data rate R is limited
by the memory bandwidth of the underlying hardware; we deter-
mine R through profiling. We can state the following inequalities
for an actor:

nX
j=1

wjiΦ
∗
j (z) ≤ R, for all i ∈ {2, . . . , n}

Ui(z) ≤ 1, for all i ∈ {1, . . . , n}
The first constraint limits the data rate of an input stream to R and
the second constraint restricts the arrival rate z by the processor
capacity of a single core whilst executing a single actor solely.
Since the left-hand sides of both constraints are linear functions
in z, we obtain:

z ≤ RPn
j=1 wjiα′

j

, for all i ∈ {2, . . . , n}

z ≤ 1Pn
j=1 wjiα′

jγi
, for all i ∈ {1, . . . , n}

Hence, the upper bound ubi for actor i ∈ {2, . . . , n} is

z ≤ min

RPn

j=1 wjiα′
j

,
1Pn

j=1 wjiα′
jγi

!
= ubi,

whereas for the start node the upper bound is ub1 = min(R, 1
γ1

).
The upper bound ubs of the arrival rate imposed by the parallel

system is given by
nX

i=1

Φ∗
i (z) ≤ pR

nX
i=1

Ui(z) ≤ p,

where the first inequality states that the sum of the output data
rates of actors cannot exceed pR assuming that each processor has
the same memory bandwidth and the second constraint limits the
overall load of the system to p times 100%. Since the left-hand
sides of the above inequalities are linear, z can be factored out and

361

a
pa

b

cb

pb

c

cc

a
pa

s

lcb

cb cb cb

b1

cb

pb

b2

cb

pb

bl

cb

pb

j

pb pb pb

lpb

c

cc

(a) (b)

Figure 4. Hot actor duplication: (a) A pipeline consists of one hot
actor b with duplicity l. (b) Duplication of actor b.

we obtain

z ≤ pRPn
i=1 α′

i

z ≤ p

γ1 +
Pn

i=2 γi

Pn
j=1 wjiα′

j

.

Hence, the upper bound ubs is obtained by

z ≤ min

pRPn
i=1 α′

i

,
p

γ1 +
Pn

i=2 γi

Pn
j=1 wjiα′

j

!
= ubs .

The upper bound ubi of an actor i and the upper bound of the
parallel system ubs are conservative since a concrete placement
can further lower the upper bound.

DEFINITION 2. An actor i is called hot if ubi < ubs, and cold
otherwise.

If a hot actor is stateless, the stream graph transformation will
create new instances of the actor to reduce the data input rate. With
the reduced data input rates of the new instances, the bottleneck will
be eliminated. Note that actors with a peek-rate that is greater than
the pop-rate carry implicit state and hence are treated as stateful
actors. For stateful hot actors, there is no simple transformation to
overcome the bottleneck.

For the stream graph transformation, we introduce the notion of
duplicity of an actor i that gives the number of instances required
to avoid a bottleneck in the stream graph.

DEFINITION 3. The duplicity of an actor is defined by

di = dUi(ubs)e .
A duplicity of one means that the actor is cold; a duplicity greater
than one makes an actor hot.

4.2 Stream Graph Transformation
If the total processing capacity and the memory bandwidth of the
parallel system are the most restricting constraints for the arrival
rate z, the stream program is called bottleneck free, i.e., the pro-
cessing capacity and/or the memory bandwidth is fully utilized. If
a stateless actor b is hot, the stream program has a bottleneck and
we create new instances of the actor so that the transformed stream
program becomes bottleneck free.

The duplication of a hot actor b with duplicity l is depicted in
Figure 4. Additional l − 1 instances of actor b, a new roundrobin
splitter s and a joiner j are added to the vertex set V and incoming
and outgoing streams for the instances of actor b are duplicated for
the new vertices, i.e.,

E′ = E ∪ {(a, s)|(a, b) ∈ E} ∪ {(j, c)|(b, c) ∈ E}
∪{(s, bi)} ∪ {(bi, j)}, for all i ∈ {1, . . . , l} (9)

The consumed and produced tokens for the newly introduced
nodes s and j are adjusted according to the data rates of hot ac-
tor b and duplicity l.

To minimize the number of data channels introduced by the
duplication, we extend the notion of hot actors to hot regions. A
hot region is a maximal connected subgraph HR = (V ′, E′) in
G whose actors are hot and stateless. We assume that splitters and
joiners are special nodes which cannot be regarded as hot actors.
Hence, a hot region has the shape of a pipeline consisting one or
more hot filters. The heuristic approach for region duplication is
outlined in Algorithm 1.

Algorithm 1 Heuristic for Bottlenecks
1: Determine hot regions (HRs) in G.
2: for each (V ′, E′) in HRs do
3: dHR = max

i∈V ′
di

4: Duplicate (V ′, E′) in G
5: end for

Hot regions are determined by a DFS search (line 1). The
duplicity of a hot region HR is calculated by taking the maximum
duplicity of the actors in the HR (line 3). In duplicating HR (line 4),
we apply the same approach as explained in Figure 4 except that
all the internal edges of the HR will also be duplicated and the
consumed and produced tokens for the newly added nodes s and j
are adjusted according to the duplicity of the HR and the data rates
of the first and last hot actors of the HR, respectively.

5. Actor Allocation Problem
The Actor Allocation Problem (AAP) seeks an actor placement
onto processors such that the arrival rate z of the stream program
becomes maximal. The actor allocation problem may be expressed
as a mathematical program as stated below:

max. z (10)

s.t.
pX

j=1

yij = 1 for all i ∈ {1, . . . , n} (11)

nX
i=1

Ui(z)yij ≤ 1 for all j ∈ {1, . . . , p} (12)

yij ∈ {0, 1} for all i ∈ {1, . . . , n},
for all j ∈ {1, . . . , p}

(13)

The binary variable yij is one if actor i is placed on processor j;
zero otherwise. The constraint in Eq. (11) ensures that exactly one
processor executes actor i. The right-hand side of the constraint
in Eq. (12) represents the processor load of processor j for an
allocation and it is bounded by 100%, i.e., the maximal processor
load.

The mathematical program optimizes for the arrival rate rather
than the throughput. However, the throughput is a linear function
of the arrival rate, i.e.,

nX
i=1

ξi =

nX
i=1

Φ∗
i (z) =

nX

i=1

α′
i

!
z, (14)

362

whose slope
Pn

i=1 α′
i is positive. Although arrival rate and through-

put are different optimization objectives, the solutions are identical.

THEOREM 1. The actor allocation problem is NP-hard.

PROOF 4. The proof is shown in Appendix A.

In the following we devise an algorithm for AAP that uses an
oracle. The oracle tests whether for a given arrival rate z, there
exists an actor allocation. With the existence of an oracle, binary
search can be employed to seek for the largest z for which there
exists an actor allocation. The binary search needs an upper and
lower bound to commence the search. The lower bound is zero
and an upper bound can be derived directly from the AAP problem
itself as shown later in this section. Since the problem is NP hard,
we cannot hope for an oracle that delivers a precise answer in
polynomial time (unless P=NP). Hence, we use an approximate
oracle that has no false positives, i.e., if the approximate oracle
answers positively, there always exists an allocation, however, if
the answer is “no”, there might or might not exist an allocation.

As an oracle for AAP we use the bin-packing problem. For a
fixed arrival rate z, the mathematical program of AAP reduces to
the standard bin-packing problem [33].

DEFINITION 4 (Bin-packing). Given a set of items A with sizes
si ∈ (0, 1] for all i ∈ {1, . . . , n}, find a k-partitioning B1, . . . , Bk

of k disjoint sets Bj ⊆ A such that
P

si∈Bj
si ≤ 1, for all

j ∈ {1, . . . , k}.

Bin-packing is an NP-complete problem for which approximation
algorithms with polynomial runtime complexity and bounded solu-
tion quality exist.

OBSERVATION 1. Bin-packing is an oracle in the arrival rate z.

PROOF 5. Assume actors in AAP become items and processors in
AAP bins, and set the item size to si = Ui(z). The bin-packing
problem either delivers a packing for AAP limiting the number of
bins to p, or it fails.

The binary search scheme is illustrated in Algorithm 2. Let
ubz denote an upper bound of the arrival rate. The feasibility
test of allocating actors to processors is achieved by using a bin-
packing oracle (cf. line 8) for a given arrival rate m, whether an
allocation for p bins (i.e. processors) and n items (i.e. actors) can
be found. In the algorithm we have the invariant that the lower
bound l of the arrival rate represents a feasible solution and u
represents an infeasible solution. If the initial upper bound of the
algorithm represents a feasible solution, we do not enter the loop
and terminate with a feasible and optimal solution. If the actor
allocation is feasible at the mid point of u and l, the lower bound is
assigned the midpoint; otherwise the upper bound is assigned the
midpoint (see line 7–11 of Algorithm 2). We terminate the binary
search when the gap between lower and upper bound is less than
or equal to a small value ε. In each step i the initial gap of ubz

between feasible and infeasible solution halves and we gain one
bit in precision. Hence, the inequality ubz

2i ≤ ε holds after the
termination of the algorithm, where i is the number of executed
steps. The inequality implies that after dlg2(

ubz
ε

)e steps the binary
search scheme will terminate.

For achieving an acceptable runtime complexity, an approxi-
mate oracle is employed. The approximate oracle is implemented
as a greedy approximation algorithm for bin-packing [33] that
achieves a packing of Bapx ≤ 2Bopt, where Bopt is the optimal
number of bins required to pack the items, and Bapx is the worst-
case result of the approximation algorithm for all instances of bin-
packing.

Algorithm 2 Binary Search
Require: n: the number of actors, p: the number of processors

1: l← 0
2: u← ubz

3: if ∃ bin-packing allocation for arrival rate u then
4: return allocation for arrival rate u
5: end if
6: while u− l > ε do
7: m← (l + u)/2
8: if ∃ bin-packing alloc. for p bins and z = m then
9: l← m

10: else
11: u← m
12: end if
13: end while
14: return allocation for arrival rate l

The greedy bin-packing algorithm is implemented as follows:
At any intermediate step i, it has a list of partially packed bins,
B1, . . . , Bk. The approximation algorithm picks an item of size si

and attempts to pack it in one of the partially packed bins of any
assumed order. If the item does not fit into any of the partially filled
bins, the algorithm opens a new bin Bk+1 and packs the item in
it. If the algorithm requires Bapx bins then at least Bapx − 1 of
the bins are more than half filled. Hence, Bapx−1

2
<
Pn

i=1 si

implies Bapx − 1 < 2Bopt since
Pn

i=1 si is a lower bound and
Bapx ≤ 2Bopt follows.

In the following we analyze the quality of the solution obtained
by binary search using the approximate oracle.

LEMMA 5. Given a packing B1, . . . , Bk of an instance of bin-
packing. There exists a packing with

˚
k
2

ˇ
bins by scaling items

by 1
2

, i.e., s′i = si
2

.

PROOF 6. In the packing B1, . . . , Bk of k bins,
P

si∈Bj
si ≤ 1,

for all j ∈ {1, . . . , k}. If all items are scaled by a factor 1
2

, the
inequality X

s′
i∈Bj

s′i ≤
1

2
for all j ∈ {1, . . . , k}

holds. Hence, two consecutive bins can be packed in a single
bin, i.e., B′

j = B2j−1 ∪ B2j such that
P

s′
i∈Bj

s′i ≤ 1 for all

j ∈ {1, . . . , b k
2
c}. If k is an odd number, then B′

d k
2 e

= Bk of size

less than or equal to 1
2

; otherwise this bin is not required.

COROLLARY 1. If there exists an optimal packing with k bins, a 2-
approximation bin-packing algorithm obtains a packing of k bins
with item sizes s′i = si

2
.

THEOREM 2. A 2-approximation for the bin-packing oracle gives
a 2 + ε-approximation for AAP.

PROOF 7. W.l.o.g. we assume that p bins are required to pack items
of item sizes si = Ui(zopt − ε) with a worst-case arrival rate of
zopt − ε using a precise oracle. Note that the arrival rate may be
reduced by ε due to the halting condition of the binary search and
we assume that Ui(z) ≥ ε.

363

By Corollary 1 we achieve an approximate packing with p bins
by scaling the item sizes by 1

2
:

Ui(zapx) ≥
Ui(zopt − ε)

2
⇒

nX
j=1

α′
jwji

!
zapx ≥

“Pn
j=1 α′

jwji

”
(zopt − ε)

2
⇒

zopt

zapx
≤ 2 +

ε

zapx
≤ 2 + ε.

For each step in the binary search scheme, we have an invo-
cation of the bin-packing approximation that exhibits a worst-case
runtime complexity of O(np). There are at most lg2

ubz
ε

invoca-
tions of the bin-packing heuristic, and, hence, the overall complex-
ity of finding an approximate solution is O(np lg2

ubz
ε

).
An instance bound gives an upper bound on the quality of an

approximate solution without knowing the optimal solution. An
instance bound can be found if an upper bound of the arrival rate is
known, i.e.,

1 ≤ zopt

zapx
≤ ubz

zapx
. (15)

We can deduce an upper bound by summing up the left- and right-
hand side of Eq. (11) over j ∈ 1, . . . , p:

pX
j=1

nX
i=1

Ui(z)yij =

nX
i=1

Ui(z)

pX
j=1

yij =

nX
i=1

Ui(z) ≤ p⇒

nX
i=1

γi

nX
j=1

α′
jwji

!
z ≤ p⇒

z ≤ p
nX

i=1

γi

nX
j=1

α′
jwji

! = ubz (16)

The upper bound ubz is also employed for initializing the binary
search scheme.

6. Experiments
We have implemented our proposed mapping technique as an ex-
tension to the StreamIt compiler framework [1]. Our backend gen-
erates a uniprocessor schedule for profiling actor execution times
of a stream program. Profiling uses the x86-64’s hardware cycle
counters exported by the clock library from [4]. Actor profiles and
the stream graph topology information are then used to compute
the closed form on the input data rate z. Quantitative analysis de-
termines bottleneck actors and their duplicity. After bottleneck re-
moval we compute the periodic schedule for the transformed stream
graph and allocate actors to processors. Bottleneck removal and ac-
tor allocation are parameterized by the user-supplied number of
processors (p), and by the memory bandwidth (R) that we de-
termine through profiling. Based on the processor allocation our
StreamIt compiler backend generates C-code for the parallelized
version of the stream program. With the parallelized version the
main program will spawn a scheduler thread on each of the p pro-
cessors. Each scheduler invokes the actors that have been allocated
to the corresponding processor. Together, the schedulers execute
a steady-state iteration of the parallel periodic schedule. In be-
tween iterations, schedulers synchronize at a barrier. Data-channels
between actors are implemented as shared-memory FIFO-buffers.
Buffer sizes are derived from the periodic schedule and buffers are
statically allocated. We employ multi-buffering similar to [11] to
remove filter dependencies within a steady-state iteration of the
stream graph.

Table 1. Benchmark characteristics.
Benchmark Actors Stateful Peeking
DCT 22 18 16
FMRadio 67 23 22
TDE 55 27 2
FFT 26 14 0
MergeSort 31 2 0
FilterBank 53 34 16
RadixSort 13 2 0
Equalizer 65 22 20
BitonicSort 452 2 0
DES 375 180 1
MPEG 39 7 0
MatrixMult 52 2 0

To have a comparison for the quality of our achieved solutions
we implemented the ILP formulation from [18]. The resulting ILP
problems were solved using CPLEX. We evaluated our technique
using 12 StreamIt applications depicted in Table 1.

We considered programs which have both stateful and stateless
actors and actors with peeking operations (the ILP formulation
from [18] was extended to work with stateful actors: we added
additional constraints that prevent duplication of stateful actors,
which reduces the solution space as well). Note again that actors
where the peek-rate is greater than the pop-rate were identified
as stateful actors and thus no actor duplication was performed.
We encountered only one benchmark, FMRadio, that showed this
characteristic.

The details of each benchmark are available online [1]. We
have disabled the println statements because they were used in
the sink nodes imposing high overheads. Sink nodes are stateful
and hence cannot be duplicated. However, having a stateful node
with dominating costs makes actor allocation trivial and does not
allow a meaningful comparison of the approaches. Each bench-
mark was compiled and executed on a 2.33GHz dual quad-core
Intel Xeon computer with 16GB main memory and Linux kernel
version 2.6.23.

Table 2 shows the experimental results on 2–4 processors. The
time to solve our actor allocation problem was in the range of mil-
liseconds and we omitted it because it does not provide any useful
insight. On the other hand, the ILP solve times vary greatly, with
a tendency to grow substantially for larger numbers of processors
(column tILP in Table 2). E.g., with FFT the ILP solve time in-
creases from 0.46 seconds to 12 hours when the processor number
is increased to three. The solver takes about 70 hours to solve the
mapping for four processors.

We compared the input data rates achieved by our method with
the data rates from the ILP formulation (the optimal solution).
Column zapx

zopt
in Table 2 shows that the quality of our solutions

stays within 5% of the optimum. The data rates achieved by our
method are given in megabytes/second (column zapx of Table 2).
The lowest data rate was achieved for the FFT benchmark for 4
processors, and it is still 95% of the optimal data rate. The DCT
and MergeSort benchmarks achieve 96% and 97% of the optimal
rates respectively. Other than these, our approximation is mostly
identical to the optimum. Data rates increase with the number of
processors.

Figure 5 presents the speedups obtained by the approxima-
tion method for 2, 4, 6 and 8 processors over uniprocessor ex-
ecution. Our approximation obtains near-linear average speedups
of 6.95x for 8 processors. MPEG, RadixSort and MatrixMult
achieve lower speedups due to stateful filters that cannot be paral-

364

Table 2. Experimental results for 2–4 processors.

Benchmark P# tILP (s)
zapx

zopt

zapx

(MB/s)

DCT
2 0.27 0.99 42.56
3 1585.69 0.97 62.46
4 2285.01 0.96 82.57

FMRadio
2 0.08 1.00 2.89
3 3.22 1.00 4.00
4 1.29 0.99 5.34

TDE
2 0.09 1.00 6.08
3 0.17 1.00 19.80
4 274.69 1.00 28.81

FFT
2 0.46 0.98 43.91
3 44694.25 0.98 46.85
4 249240.09 0.95 95.50

MergeSort
2 0.07 1.00 26.35
3 0.09 0.99 56.24
4 1.62 0.97 70.12

FilterBank
2 0.06 1.00 1.68
3 0.62 0.99 2.51
4 3.56 1.00 5.29

RadixSort
2 0.64 0.99 32.91
3 0.09 1.00 49.98
4 0.47 0.99 66.83

Equalizer
2 0.06 1.00 0.56
3 5.29 1.00 0.83
4 57553.83 0.99 1.59

BitonicSort
2 0.3 1.00 3.16
3 3.06 1.00 4.73
4 16371.99 1.00 10.14

DES
2 0.51 1.00 0.12
3 2.73 1.00 0.18
4 11.24 1.00 0.24

MPEG
2 0.09 1.00 36.59
3 1.37 0.99 54.68
4 0.44 1.00 73.22

MatrixMult
2 0.14 1.00 18.74
3 4.85 1.00 28.16
4 103.00 0.99 37.37

lelized as explained in Section 2. All other benchmarks scale well
with increasing numbers of processors.

7. Related Work
Unlike classical data flow [9], SDF [20] fixes the number of to-
kens produced and consumed by an actor already at compile time.
The static nature of SDF facilitates static program optimizations
wrt. streamgraph transformations, partitioning and scheduling. A
wide range of static scheduling algorithms for the SDF model ex-
ist [11, 16, 18, 19, 24, 31, 32]. SDF has been fundamental for con-
temporary stream languages including StreamIt [28, 30].

The StreamIt compiler [11] targets the Raw Microproces-
sor [22], shared-memory multicore architectures and clusters of
workstations. To increase the computation to communication ratio,
adjacent actors are fused as long as the result is stateless. A heuris-
tic for actor fission is then applied to increase data-parallelism to
the extent that a communication-efficient balance between task and
data parallelism is maintained. Coarse-grained software-pipelining
of actors eliminates actor dependencies within the same steady-
state iteration, which increases flexibility of the program partition-
ing and scheduling phases. A greedy partitioning heuristic that

 1

 2

 3

 4

 5

 6

 7

 8

D
C

T

F
M

R
ad

io

T
D

E

F
F

T

M
er

g
eS

o
rt

F
il

te
rB

an
k

R
ad

ix
S

o
rt

E
q

u
al

iz
er

B
it

o
n

ic
S

o
rt

D
E

S

M
P

E
G

M
at

ri
x

M
u

lt

S
p

ee
d

u
p

P2 P4 P6 P8

Figure 5. Speedups obtained for 2, 4, 6 and 8 processors.

minimizes the makespan is applied to load-balance actors among
processors.

Kudlur and Mahlke’s stream graph modulo scheduling [18]
employs an ILP formulation to evenly distribute StreamIt actors
among the synergistic processing elements of the Cell proces-
sor [13]. The ILP formulation consists of an integrated unfold-
ing and partitioning technique that spreads data-parallel actors
and maximally packs actors onto cores. Coarse-grained software
pipelining is then applied such that computations of the current
steady-state iteration are overlapped with data transfers for future
iterations. In contrast to our model, (1) no approximation scheme
was provided, making the approach intractable for larger problem
instances, (2) the mathematical model optimizes makespan rather
than arrival rate, (3) the proposed stream graph transformation
duplicates single actors rather than regions, which may lead to a
larger number of communication channels, and (4) we separate the
bottleneck elimination from the actor allocation.

Udupa et al. devised an ILP formulation to partition and
software-pipeline StreamIt programs on GPUs. The optimal ex-
ecution configuration of a stream program in terms of the number
of registers per thread and the number of data-parallel actor in-
stances is determined through profiling. A buffer layout technique
for GPUs that coalesces accesses to device memory is presented.
The proposed approach minimizes makespan.

Orchestrating the execution of stream programs on multicore
platforms with accelerators like GPGPUs is examined in [32].
Udupa et al. formulated a communication-aware ILP problem for
partitioning computations between CPU cores and GPGPU stream-
ing multiprocessors (SMs). They proposed a heuristic algorithm for
the ILP problem, with solutions on average within 9.05% of the op-
timal solution across the benchmark suite. Partitioned tasks are then
software-pipelined to execute on CPU cores and on the SMs of the
GPU.

Carpenter et al. [6] present an iterative heuristic partitioning
and allocation algorithm that maps Kahn process networks with
optional SDF-parts onto heterogeneous multiprocessors. Partitions
with short software pipelines are favored to reduce memory, latency
and startup overheads that increase with the number of pipeline
stages. To shorten software pipelines, generated partitions are con-
vex, i.e., they are connected and without circular dependencies.
Partitioning is parameterizable through the provision of basic con-
nected sets, which constitute collections of actors that the compiler
is allowed to pairwise merge. Their assumption that partitions need
to be convex is not proven to be code optimal.

365

8. Conclusion
In this paper, we presented an approximation algorithm for solving
the actor allocation problem, and a data rate transfer model that
resolves bottlenecks in stream graphs. In our approach, we separate
the bottleneck elimination process from the actor allocation which
enables efficient and effective bottleneck elimination and actor
allocation for multicore architecture.

Current state-of-the-art approaches rely on integer linear pro-
gramming that provides optimal solutions for actor allocation
(though only sub-optimal ILP models for rewriting the stream
graph are currently available). The runtime of commercial ILP
solvers makes an ILP approach impractical even for small to mod-
erate benchmark sizes and low numbers of processors. In contrast,
our approximation framework performs the task within millisec-
onds. The quality of our solution is 5% off the optimal solution,
and for up to 8 processors achieves a geometric mean speedup of
6.95x over single processor execution across the StreamIt bench-
mark suite.

Acknowledgements
We thank Professor Saman Amarasinghe for shepherding this pa-
per. Much gratitude also goes to the anonymous referees who pro-
vided excellent feedback on this work.

References
[1] StreamIt Website.

http://groups.csail.mit.edu/cag/streamit, retrieved 2010.

[2] J. Backus. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. ACM Turing
Award Lectures, 2007.

[3] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[4] R. E. Bryant and D. R. O’Halloran. Computer Systems: A Program-
mer’s Perspective. Prentice-Hall, 2003.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs: Stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[6] P. M. Carpenter, A. Ramirez, and E. Ayguade. Mapping stream pro-
grams onto heterogeneous multiprocessor systems. In CASES ’09:
Proceedings of the 2009 International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems, pages 57–66. ACM,
2009.

[7] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-la: Achieving high performance from compiled network ap-
plications while enabling ease of programming. In PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2005.

[8] Cisco. The Cisco QuantumFlow processor: Cisco’s next generation
network processor. White paper, 2008.

[9] J. B. Dennis. First version of a data flow procedure language. In Pro-
gramming Symposium, Proceedings Colloque sur la Programmation,
pages 362–376. Springer-Verlag, 1974.

[10] W. Eatherton. The push of network processing to the top of the
pyramid, 2005.

[11] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
ASPLOS ’06: Proceedings of the 2006 International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2006.

[12] J. Gummaraju and M. Rosenblum. Stream programming on general-
purpose processors. In MICRO 38: Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
343–354. IEEE Computer Society, 2005.

[13] H. P. Hofstee. Power efficient processor architecture and the Cell
processor. In HPCA ’05: Proceedings of the 2005 International
Symposium on High-Performance Computer Architecture, pages 258–
262. IEEE Computer Society, 2005.

[14] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s
next-generation server processor. IEEE Micro, 30(2):7–15, 2010.

[15] M. Karczmarek. Constrained and phased scheduling of synchronous
data flow graphs for the StreamIt language. Master’s thesis, Mas-
sachusetts Institute of Technology, 2002.

[16] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling
of stream programs. LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, 38(7):1235–1245, 2003.

[17] R. M. Karp and R. E. Miller. Properties of a model for parallel
computations: Determinacy, termination, queueing. SIAM Journal on
Applied Mathematics, 14(6):1390–1411, 1966.

[18] M. Kudlur and S. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. In PLDI ’08: Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2008.

[19] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions
on Computers, 36:24–35, 1987.

[20] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-
ings of the IEEE, 75(9):1235–1245, 1987.

[21] W. R. Mark, R. Steven G., K. Akeley, and M. J. Kilgard. Cg: a system
for programming hardware in a C-like language. In SIGGRAPH ’03.
ACM, 2003.

[22] E. W. Michael, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, S. Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring it all to software: The Raw machine. IEEE
Computer, 30:86–93, 1997.

[23] NVIDIA Corporation. CUDA C Programming Guide 3.1, 2010.

[24] S. Robert. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

[25] B. G. Ryder and M. C. Paull. Elimination algorithms for data flow
analysis. ACM Comput. Surv., 18(3):277–316, 1986.

[26] J. L. Shin, K. Tam, D. Huang, B. Petrick, and H. Pham. A 40nm
16-core 128-thread CMT SPARC SoC processor. In ISSCC ’10,
Solid-State Circuits Conference Digest of Technical Papers. IEEE
International, 2010.

[27] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-
throughput stream programming in Java. OOPSLA ’07: Proceedings
of the 2007 ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications, 42(10), 2007.

[28] W. Thies. Language and Compiler Support for Stream Programs. PhD
thesis, Massachusetts Institute of Technology, USA, 2009.

[29] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
PACT ’10 Proceedings of the 2010 Conference on Parallel Architec-
tures and Compilation Techniques. ACM, 2010.

[30] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A lan-
guage for streaming applications. In CC ’02: Proceedings of the 11th
International Conference on Compiler Construction, pages 179–196,
London, UK, 2002. Springer-Verlag.

[31] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
pipelined execution of stream programs on GPUs. In CGO ’09:
Proceedings of the 7th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE Computer Society, 2009.

[32] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Synergis-
tic execution of stream programs on multicores with accelerators.
LCTES ’09: Proceedings of the 2009 ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems,
44(7), 2009.

[33] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

366

[34] H. Wei, J. Yu, H. Yu, and G. R. Gao. Minimizing communication in
rate-optimal software pipelining for stream programs. In CGO ’10:
Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 210–217. ACM, 2010.

[35] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight
streaming layer for multicore execution. SIGARCH Comput. Archit.
News, 36(2):18–27, 2008.

[36] D. Zhang, Z. Li, H. Song, and L. Liu. A programming model for an
embedded media processing architecture. In SAMOS ’05: Proceed-
ings of the 2005 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation. Springer LNCS,
2005.

A. NP Hardness
PROOF 8. (of Theorem 1). We show the NP hardness by reducing
the partitioning problem [33] to the actor allocation problem. The
partitioning problem has a finite set of integer numbers A =
{a1, . . . , an} as input and determines whether there exists two
disjoint subset X1 ⊆ A and X2 ⊆ A with A = X1 ∪ X2 whose
sums

P
a∈X1

a and
P

a∈X2
a are equal.

Actor a1

Actor a2

Actor an

Figure 6. Reduction of partition problem to actor allocation prob-
lem.

Let’s assume that the parallel system has two processors p1 and
p2. For each element in set A we introduce a vertex u ∈ V . Element
a ∈ A of associated vertex u is denoted by au. The principle
decision whether a number a is either in the subset X1 or X2,
is modeled by placing u on p1 otherwise u is placed on p2.

We chain the filters in a pipeline as depicted in Figure 6 and de-
fine following constants for the bandwidth and processor utilization
function

αu = 1

γu =
2auP
a∈A a

Hence, α′
u = 1, and Uu(z) = γu. The arrival rate can be at most

one, if the AAP problem can pack the load of the actors equally
on the two processors constituting a solution to the partitioning
problem and the theorem follows.

B. Glossary
αi The ratio between the number of bytes produced

and consumed for a single invocation of actor i
Γi The processor utilization function of actor i

Γ−1
i The inverse function the processor utilization

function Γi

γi
ti
ιi

ιi The number of bytes read from the program input
for a single invocation of actor i

ξi The output data rate of actor i in the periodic
schedule

Π Make span: the time duration of the longest run-
ning processor

Φi Data rate transfer function of actor i
ωi The number of bytes produced by a single invo-

cation of actor i
(i, j) A channel (i, j) ∈ E queues data elements

which are passed from the output of computa-
tion i to the input of computation j

ci Number of consumed tokens on each execution
of actor i

di Duplicity of an actor i, i.e., how many instances
in the stream graph are required to avoid a bottle-
neck.

E A set of edges
G(V, E) A stream graph consists of V vertices and E

edges
I The identity matrix
n Number of actors in the stream program
p Number of processors in the parallel system
pi Number of produced tokens on each execution of

actor i
q Repetition vector
qi The number of occurrences of actor i in the peri-

odic schedule
R Maximum data rate limited by memory band-

width
ti The execution time of actor i

Ui Utilization, Ui = γi
Pn

j=1

“
wjiα

′
j

”
z

ubi The upper bound of the arrival rate for an actor i
ubs The upper bound of the arrival rate imposed by

the parallel system
ubz The upper bound of the arrival rate obtained by

quantitative analysis
V A set of vertices
wij The fraction of the output data rate of actor i that

is diverted from actor i to channel (i, j)
xi The output data rate of actor i
z Arrival rate

367

